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Abstract We describe a novel extension of the Poisson

regression model to be based on a multi-layer perceptron, a

type of neural network. This relaxes the assumptions of the

traditional Poisson regression model, while including it as a

special case. In this paper, we describe neural network

regression models with six different schemes and compare

their performances in three simulated data sets, namely one

linear and two nonlinear cases. From the simulation study

it is found that the Poisson regression models work well

when the linearity assumption is correct, but the neural

network models can largely improve the prediction in

nonlinear situations.
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1 Introduction

After the first paper about neural networks published by

McCulloch and Pitts [1], statisticians and artificial intelli-

gence scientists have worked independently on this subject

for several decades. Recently, efforts had been made to

combine techniques such as regression and classification

models, which are common in both disciplines. In real

applications, the most commonly used regression and

classification models are linear. Currently various nonlin-

ear methods, such as generalized additive models (GAM),

classification and regression tree (CART), multivariate

adaptive regression splines (MARS) and neural network

models have become popular. Among these popular non-

linear methods, neural network models are attractive in

their flexibility, and achieve comparable performance in

prediction.

There have been some developments on the combination

of neural network and statistical models. These include

nonlinear multiple regression, nonlinear logistic regression

and nonlinear multinomial logistic regression using neural

networks described by Ripley [2] and Bishop [3]. Neural

networks have also been used in modeling survival data in

a variety of ways [4]. Faraggi and Simon [5] suggested an

extension of the Cox proportional hazard model, and

commented that similar extensions can be made to logistic

regression and multinomial logistic regression. Nonlinear

extension of ordinal logistic regression was proposed by

Mathieson [6].
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In addition, reports in some research papers suggest

that the extension of generalized linear model (GLM)

by neural network models are applicable in real data set

such as speech recognition, waveform analysis of elec-

trocardiography, electroencephalography, and signal pro-

cessing. This kind of neural network has also been

successfully applied in clinical outcome prediction of

myocardial infarction, mortality, surgical decision making

on traumatic brain injury patients, recovery from surgery,

pediatric, genecology, head trauma, and transplantation

[7–16].

In this paper, we extend the linear Poisson regression to

neural network Poisson regression, and examine its per-

formance in comparison to the linear Poisson regression for

simulated data. Based on existing literature this model has

not been introduced before.

2 Methods

2.1 Neural networks

The most commonly used form of neural network is the

multi-layer perceptron (MLP). A MLP consists of one

input layer of units, one output layer of units and possibly

one or more layers of ‘hidden’ units. The input units pass

their inputs to the units in the first hidden layer or directly

to the output units. Each of the hidden layer units adds a

constant (termed as ‘bias’) to a weighted sum of its inputs

and calculates an activation function /h of the result. This

is then passed to hidden units in the next layer or to the

output unit(s).

In this paper, we fix the activation function (/h) as

tangent hyperbolic function in hidden layer and exponen-

tial function in output layer (/0). Denote the inputs as xi‘s

and the outputs tk‘s, for MLP with one hidden layer

tk ¼ /0 ak þ
X

j!k

xjk/h aj þ
X

i!j

xijxi

 ! !
ð1Þ

If we have only one output node, k will be equal to one.

The weights can be determined by optimizing some proper

criterion function such as minimizing the sum of squared

errors of the predicted variable or maximizing the log-

likelihood of the data in cases where a distribution of the

response variable can be assumed.

The structure of MLP made it possible to fit very general

nonlinear functional relationships between inputs and out-

puts. Research results have shown that neural networks

with enough hidden units can approximate any arbitrary

functional relationships [17, 18]. However, over-fit can be

a serious problem in such a framework. This problem is

usually overcome either by stopping the optimization early

or more often by using regularization techniques to

penalize the optimization criterion. By adding a penalty

term to the optimization criterion, the estimates of the

weights will be shrunk which is also termed as shrinkage

method. The following smoothness penalty is often used in

shrinkage method:

L ¼ � log likelihoodþ k
X

weights

x2
ij ð2Þ

This process is also known as weight decay in neural

network literatures. The tuning parameter k can be chosen

by cross-validation. For fixed number of hidden units, we

minimize this penalized log-likelihood in Eq. 2 to get the

weights estimated [4].

2.2 Optimization criteria

Given a training set comprising a set of input vectors {xn},

where n = 1,…, N, together with the corresponding target

vector {yn}, if we assume that data points yn (n = 1,…, N)

are independent conditional on xn, the likelihood function

can be written as:

PðyjxÞ ¼
YN

n¼1

pðynjxnÞ ð3Þ

The error function can be defined as the negative log-

likelihood:

E ¼ � log Pðy1; . . .; yN jx1; . . .; xNÞ ¼ �
XN

n¼1

log pðynjxnÞ

ð4Þ

For regression problems with normality assumption, this

can be reduced to the most commonly used squared error

criterion:

EðwÞ ¼ 1

2

XN

n¼1

fyn � tnðxn; wÞg2 ð5Þ

For classification problems, it is often advantageous to

associate the network outputs to the posterior probabilities

of each class. For a problem with two classes, the target

variable {yn} is binary and can be assumed to follow

binomial distribution with its probability as tn(xn; w). The

error function in Eq. 4 then yields the cross-entropy error

function:

E ¼ �
X
fyn ln tn þ ð1� ynÞ lnð1� tnÞg ð6Þ

This definition can be extended to other family of GLM

such as multinomial logistic regression and ordinal logistic

regression or Cox regression for survival models [2–6]. We

will consider the Poisson regression in the following.
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2.3 Poisson regression

Suppose we have a single target variable with count

response, we consider the nonlinear Poisson regression for

neural networks as an extension of generalized linear

models.

The Poisson probability distribution for count data is

given by:

P½Yn ¼ yn� ¼
e�knkyn

n

yn!
; yn ¼ 0; 1; 2; . . . ð7Þ

In linear Poisson regression, the most commonly used

formulation is the log-linear link function: ln kn ¼ x0nb.

Thus, the expected value for yn is given by E½ynjxn� ¼
kn ¼ ex0nb .

Here, we model kn as a function of xn by an MLP neural

network:

tn ¼ k̂n ¼ /0 aþ
X

j

xj/h aj þ
X

i!j

xijxn

 ! !
ð8Þ

Substituting Poisson probability function in Eq. 4 and

using Eq. 8 as Poisson means, the negative log-likelihood

criterion can be obtained as:

E ¼ �
XN

n¼1

½�tn þ yn log tn � ln yn!� ð9Þ

Eliminating the last term which is not related to the

model fitting, we have:

E ¼ �
XN

n¼1

½�tn þ yn log tn� ð10Þ

2.4 Model fitting and gradient calculation

We compare the performances of different models using

simulations. A penalized version of likelihood error crite-

rion functions given in Eq. 11 is used to fit models with

fixed number of units in hidden layer, to guard against

over-fitting.

Er ¼ E þ k
X

weights

x2
ij ð11Þ

For each data set, to identify the number of units in

hidden layer, both criteria Akaike Information Criterion

(AIC) and Schwarz Bayesian Information Criterion (BIC)

are calculated:

AIC ¼ �2� Loglikelihoodþ 2� m ð12Þ
BIC ¼ �2� Loglikelihoodþ m� logðNÞ ð13Þ

where m is the number of the estimated parameters (pro-

portion to units) and N is the number of the observations.

The model with the smallest value of the information

criterion is considered to be the best. However, it should be

noticed that in our neural network model fittings, for each

setting of fixed number of hidden units, the negative log-

likelihood score we get is suboptimal since the weights are

optimized on a penalized version of Eq. 11, We thus can

only get approximations of the AIC and BIC values.

We also calculated MSE for testing set as a reference

measure for accuracy, where MSE is defined as

1

N

XN

n¼1

ðkn � tnÞ2: ð14Þ

The predictions by different models are ranked by MSE.

The models considered include 2, 3, 4, 5, 10, 20 hidden

units. To save the computation time, the weight decay

parameter is pre-fixed at 0.012 in our simulations. This

value is chosen based on some empirical study for different

choices of weight decay parameter.

Back propagation is a general computing technique to fit

parameters in MLP. The computation involves the

numerical evaluation of derivatives of the error function

with respect to the weights and biases. The general form of

back propagation is described elsewhere [2, 3]. Here, we

use a special algorithm based on the article by Pearlmutter

[19] for computation of Hessian matrix, similar to Nabney

[20] approach. The scaled conjugate gradient algorithm is

used for optimization. The code is written in R 2.6.2 and

Matlab 7.5.

3 Simulation

The purpose of the simulation study is to check the model

selection and prediction accuracy based on neural network

Poisson regression by comparison to the Poisson linear

regression. Three different simulation schemes are used.

For each data set we generate 1,000 independent obser-

vations. The first 500 observations will constitute a training

set and the last 500 observations a testing set.

Simulation 1 (linear): a simple linear Poisson regression

model is used with a single covariate X following uniform

[0,1] distribution. The response variable is generated as

Yi� PoisðexpðXÞÞ

Simulation 2 (nonlinear): two covariates X1 and X2 are

simulated as independently from U (0,1) and U (0,2). The

response variable is generated as

Yi� Poisðexpð1þ 1:2
ffiffiffiffiffi
X1

p
þ 0:25ð

ffiffiffiffiffi
X2

4
p
ÞÞÞ

Simulation 3 (nonlinear): three covariates X1, X2, and X3 are

simulated as independently from U (0,1), U (1,2), and U

(0,0.1), respectively. The response variable is generated as

Yi� Poisðexpð0:5þ 1:2X3
1 þ 2X2

2 � 0:01X3ÞÞ
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In simulations 2 and 3 we try to produce nonlinear and

more complicated schemes in comparison to the linear

model used in simulation 1.

Both linear Poisson and neural network Poisson models

are fitted using the training set. Models are selected based

on AIC and BIC. The mean squared error (MSE) is cal-

culated for the testing set as a confirmation.

Based on the AIC and BIC values in Table 1, the models

with fewer parameters correspond to smaller AIC and BIC

values. Therefore, our expectation is that the model with

fewer parameters gives us better prediction. MSEs are

calculated on the testing sets for MLP with two units in the

hidden layer in Table 2. We also include result for MLP

with three units in hidden layer as a reference.

Result in Table 2 shows that the nonlinear neural net-

work predictions are slightly less accurate than the Poisson

linear regression when the truth is linear (first column in

Table 2), which can be anticipated. However, the gains in

accuracy are significant when the truth is nonlinear (second

and third columns in Table 2). It is also noticed that the

model selected based on AIC and BIC values in Table 1

was the model with two nodes in hidden layer. This model

indeed performs better than the model with three nodes in

the hidden layer as confirmed by MSE in Table 2. This

shows such a model selection procedure is basically valid.

And even the suboptimal nonlinear model performs much

better than the linear model if the truth is nonlinear.

Figure 1 shows comparisons of real lambda values with

their predictions by linear Poisson regression and neural

network Poisson regression for the testing set in simulation

2. It is obvious that the neural network predictions are

much closer to the actual values in comparison to the linear

Poisson regression predictions.

4 Conclusion

Any nonlinear models in statistical methodology need

some sort of assumptions about either distributions and/or

prior knowledge for suitable functions to be used in mod-

eling the nonlinearity, but in real applications (particularly

in modeling the phenomena in medical settings) we actu-

ally never know which suitable functions to use. One major

benefit of neural networks is their flexibility. As a conse-

quence, in many applications, neural networks have shown

better prediction ability compared to classical statistical

methods. MLP as a landmark of neural networks is a

flexible nonlinear regression model, and can always be

used to approximate a continuous function. It applies well

when response variable is real valued. If the response

variable is integer valued, in particular measured as count

data, the MLP is not suitable to be applied directly. The

Table 1 Results of neural network models for 3 simulated data (training data)

Model Simulation 1 Simulation 2 Simulation 3

P* AIC BIC P* AIC BIC P* AIC BIC

MLP (H* = 2) 7 758.3 787.8 9 1,787.6 1,791.5 11 1,603.5 1,649.3

MLP (H = 3) 10 762.5 804.6 13 1,789.1 1,794.6 16 1,615.2 1,686.5

MLP (H = 4) 13 768.2 823.1 17 1,790.5 1,797.6 21 1,630.3 1,718.0

MLP (H = 5) 16 774.2 841.6 21 1,791.6 1,800.5 26 1,649.7 1,751.1

MLP (H = 10) 31 804.2 934.8 41 1,796.8 1,814.1 51 1,707.5 1,924.4

MLP (H = 20) 61 864.2 1,123.1 81 1,805.7 1,839.8 101 1,820.3 2,240.3

P* number of parameters, H*number of hidden neuron

Table 2 Measure of accuracy MSE on testing data

Model Simulation 1 Simulation 2 Simulation 3

Poisson regression 0.001 0.603 0.369

MLP (H* = 2) 0.005 0.081 0.054

MLP (H = 3) 0.013 0.121 0.110

H* number of hidden neuron

Fig. 1 Plots of real lambda and its prediction based on second

simulation data. Linear Poisson prediction (‘‘.’’), Poisson neural

networks (‘‘?’’)
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hybridization of neural network with generalized linear

models provides a natural solution to such situations. In

this paper, we proposed a new nonlinear extension of

Poisson regression based on neural networks. We com-

pared the performance of two types of models for some

simulated data. Poisson regression, as a conventional sta-

tistical method, has the ability to model some linear rela-

tionship, between the independent and dependent variables,

while as an artificial neural network structure can increase

this flexibility in modeling the nonlinearity in independent

variables. While the neural network and linear Poisson

regression have similar performances and accuracy rates,

according to prediction when the truth is in linear form, the

neural networks achieve much higher accuracy in predic-

tions then when the truth is in nonlinear form. Both linear

and nonlinear Poisson regression can be implemented by

existing software. However, neural networks require a

more elaborate setup of parameters, and programming.

Other researchers have examined the extension of ordinary

linear regression, logistic regression, multinomial logistic

regression, and ordinal logistics regression by neural net-

works. This research, by extending Poisson regression to

neural networks, completed another part of the generalized

linear models.

Acknowledgments This study was sponsored by Tehran University

of Medical Sciences. Most of this work was carried out during a

sabbatical year (student visitor period) of Nader Fallah at the

Department of Mathematics and Statistics in Dalhousie University.

Authors wish to thank R. Ripley and I. Nabney for their help on R and

Matlab Codes. The authors thank Catherine Pretty and Janet Brush for

editing this manuscript.

References

1. McCulloch W, Pitts W (1943) A logical calculus of ideas

immanent in nervous activity. Bull Math Biophys 5:115–133. doi:

10.1007/BF02478259

2. Ripley BD (1996) Pattern recognition and neural networks.

Cambridge University Press, London

3. Bishop CM (2006) Pattern recognition and machine learning.

Springer, New York

4. Ripley RM, Harris AL, Tarassenko L (2004) Non-linear survival

analysis using neural networks. Stat Med 23:825–842. doi:

10.1002/sim.1655

5. Faraggi D, Simon R (1995) The maximum likelihood neural

network as a statistical classification model. J Statist Plann

Inference 46:93–104. doi:10.1016/0378-3758(95)99068-2

6. Mathieson MJ (1996) Ordinal models for neural networks. Neural

networks in financial engineering. In: Refences A-PN, Abu-

Mostafa Y, Moody J, Weigend A (eds), Proceedings of the third

international conference on neural networks in the capital mar-

kets, pp 23–536

7. Nejadgholi I, Seyyedsalehi SA (2009) Nonlinear normalization of

input patterns to speaker variability in speech recognition neural

networks. Neural Comput Appl 18:45–55. doi:10.1007/s00521-

007-0151-5

8. Baxt WG (1990) Use of an artificial neural network for data

analysis in clinical decision-making: the diagnosis of acute cor-

onary occlusion. Neural Comput 2:480–489. doi:10.1162/neco.

1990.2.4.480

9. Huang YL, Wang KL, Chen DR (2006) Diagnosis of breast

tumors with ultrasonic texture analysis using support vector

machines. Neural Comput Appl 15:164–169. doi:10.1007/s00521-

005-0019-5

10. Akin M, Kurt MB, Sezgin N, Bayram M (2008) Estimating

vigilance level by using EEG and EMG signals. Neural Comput

Appl 17:227–236. doi:10.1007/s00521-007-0117-7

11. Bailey TC, Everson RM, Fieldsend JF, Krzanowski WJ, Partridge

D, Schetinin V (2007) Representing classifier confidence in the

safety critical domain: an illustration from mortality prediction in

trauma cases. Neural Comput Appl 16:1–10. doi:10.1007/s00521-

006-0053-y

12. Eftekhar B, Mohammad K, Eftekhar H, Ghodsi M, Ketabchi E

(2005) Comparison of artificial neural network and logistic

regression models for prediction of mortality in head trauma

based on initial clinical data. BMC Med Inform Decis Mak 5:3.

doi:10.1186/1472-6947-5-3

13. Sadat-Hashemi SM, Kazemnejad A, Lucas C, Badie K (2005)

Predicting the type of pregnancy using artificial neural networks

and multinomial logistic regression: a comparison study. Neural

Comput Appl 14:198–202. doi:10.1007/s00521-004-0454-8

14. Leondes CT (1998) Neural network systems techniques and

applications. Academic Press, San Diego

15. Shafi I, Ahmad J, Shah SI, Kashif FM (2008) Computing de-

blurred time frequency distributions using artificial neural net-

works. Circuits Syst Signal Process 27:277–294. doi:

10.1007/s00034-008-9027-x

16. Shafi I, Ahmad J, Shah SI, Kashif FM (2007) Evolutionary time-

frequency distributions using Bayesian regularised neural net-

work model. IET Signal Process 1:97–106. doi:10.1049/iet-spr:

20060311

17. Funahashi K (1989) On the approximate realization of continuous

mapping by neural networks. Neural Netw 2:183–192. doi:

10.1016/0893-6080(89)90003-8

18. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Netw 2:359–

366. doi:10.1016/0893-6080(89)90020-8

19. Pearlmutter BA (1994) Fast exact multiplication by the Hessian.

Neural Comput 6:147–160. doi:10.1162/neco.1994.6.1.147

20. Nabney I (2001) Netlab algorithms for pattern recognition.

Springer London Ltd, UK

Neural Comput & Applic

123

http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1002/sim.1655
http://dx.doi.org/10.1016/0378-3758(95)99068-2
http://dx.doi.org/10.1007/s00521-007-0151-5
http://dx.doi.org/10.1007/s00521-007-0151-5
http://dx.doi.org/10.1162/neco.1990.2.4.480
http://dx.doi.org/10.1162/neco.1990.2.4.480
http://dx.doi.org/10.1007/s00521-005-0019-5
http://dx.doi.org/10.1007/s00521-005-0019-5
http://dx.doi.org/10.1007/s00521-007-0117-7
http://dx.doi.org/10.1007/s00521-006-0053-y
http://dx.doi.org/10.1007/s00521-006-0053-y
http://dx.doi.org/10.1186/1472-6947-5-3
http://dx.doi.org/10.1007/s00521-004-0454-8
http://dx.doi.org/10.1007/s00034-008-9027-x
http://dx.doi.org/10.1049/iet-spr:20060311
http://dx.doi.org/10.1049/iet-spr:20060311
http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1162/neco.1994.6.1.147

	Nonlinear Poisson regression using neural networks: �a simulation study
	Abstract
	Introduction
	Methods
	Neural networks
	Optimization criteria
	Poisson regression
	Model fitting and gradient calculation

	Simulation
	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


