Math 4220/5220 - PDE's

Mid-Term Test Solutions

1. (a) Solve the equation $u_x + 2u_y + u = 1$, $u(0, y) = y^2$. Let

$$\eta = y - 2x$$

$$\xi = x \, .$$

Then

$$u_x = u_\eta(-2) + u_\xi ,$$

$$u_y = u_\eta .$$

Subbing in gives

$$\begin{aligned} -2u_{\eta} + u_{\xi} + 2u_{\eta} + u &= 1, \\ u_{\xi} + u &= 1, \\ (e^{\xi}u)_{\xi} &= e^{\xi}, \\ e^{\xi}u &= e^{\xi} + f(\eta), \\ u &= 1 + e^{-\xi}f(\eta), \\ u &= 1 + e^{-x}f(y - 2x). \end{aligned}$$

Now we apply the initial condition

$$u(0, y) = 1 + f(y) = y^2$$

So $f(y) = y^2 - 1$ and the solution is given by,

$$u = 1 + e^{-x}((y - 2x)^2 - 1).$$

(b) Solve the equation $yu_x + xu_y = 0$ with $u(0, y) = e^{-y^2}$. We can write the equation as $\nabla u \cdot (y, x) = 0$, so the characteristics must satisfy $\frac{dy}{dx} = \frac{x}{y}$. The solution is $c = x^2 - y^2$, so the general solution is given by $u = f(x^2 - y^2)$. We apply the initial condition to get $u(0, y) = f(-y^2) = e^{-y^2}$, so $f(y) = e^y$ and the solution is given by

$$u = e^{x^2 - y^2}$$

2. Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy}$$

is elliptic, hyperbolic or parabolic. Sketch them. The discriminant is given by

$$B^{2} - AC = x^{2}y^{2} + y^{2}(1+x),$$

= $x^{2}y^{2} + y^{2} + xy^{2},$
= $y^{2}(x^{2} + x + 1).$

We note the roots of the quadratic in x are given by

$$x_{1,2} = \frac{-1+3i}{2}$$

Since there are no real roots, we have $x^2 + x + 1 > 0$ for all real x. Thus the discriminant is zero when y = 0 and positive elsewhere. So the equation is parabolic on the y-axis and hyperbolic elsewhere. Since the sketch is quite simple I'll skip it here.

3. Consider the equation,

$$u_{tt} = u_{xx}, \quad 0 < x < 1,$$
$$u(0,t) = u(1,t) = 0,$$
$$u(x,0) = \begin{cases} 0 & 0 < x < \frac{1}{4}, \\ 1 & \frac{1}{4} < x < \frac{1}{2}, \\ 0 & \frac{1}{2} < x < 1, \end{cases}$$
$$u_t(x,0) = 0.$$

Sketch the profile of the solution at $t = \frac{1}{4}$ and $t = \frac{1}{2}$. The solution is given by,

$$u = \frac{1}{2}(f(x+t) + f(x-t)),$$

where f is the function obtained by first constructing an odd extension of u(x, 0) to $x \in [-1, 1]$ then extending this to a 2-periodic function. Here is a graph of f(x)

Now we will look at what happens where $t = \frac{1}{4}$.

We repeat the procedure at $t = \frac{1}{2}$. We note that since f(x) = 0 for $\frac{1}{2} < x < 1\frac{1}{2}$, $f(x + \frac{1}{2}) = 0$ for 0 < x < 1. So the solution here is just given by $\frac{1}{2}f(x - \frac{1}{2})$.

Figure 1: $u(x, \frac{1}{2})$

4. The motion of a vibrating string under the influence of air resistance is given by the following damped wave equation,

$$u_{tt} + 2cu_t - c^2 u_{xx} = 0, \quad 0 < x < \pi, \quad t > 0,$$

where u is the vertical displacement of the string at x at time t and c > 0 is a constant. The ends of the string are held fixed $(u(0,t) = u(\pi,t) = 0)$. The initial displacement of the string is given by, $u(x,0) = 2\sin(2x)$ and the string is released with 0 initial velocity. Find the solution u(x,t).

We can use separation of variables. We guess the solution is of the form u(x,t) = X(x)T(t)and we get,

$$\frac{T'' + 2cT'}{c^2T} = \frac{X''}{X} = -\lambda^2 \,.$$

Here we have chosen $-\lambda^2$ as the constant for the eigenvalue problem to have nontrivial solutions. From the X equation, we will get the following eigenpairs:

$$X_n(x) = \sin(nx) ,$$

$$\lambda_n = n .$$

So the equation for T is then,

$$T'' + 2cT' + n^2c^2T = 0.$$

The general solution to this equation is just,

$$T_n = A e^{(-c+c\sqrt{1-n^2})t} + B e^{(-c-c\sqrt{1-n^2})t}.$$

For n = 1 we have a double root, so,

$$T_1 = A_1 e^{-ct} + B_1 t e^{-ct} \,,$$

and for n > 1 we get complex roots, so we have,

$$T_n = e^{-ct} (A_n \cos(c\sqrt{n^2 - 1}t) + B_n \sin(c\sqrt{n^2 - 1}t))$$

The solution to PDE is then,

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) X_n(x) \,.$$

Now we can use the initial conditions to solve for A_n and B_n . Since $u(x, 0) = 2\sin(x)$, $A_n = 0$ and $B_n = 0$ for all $n \neq 2$. For the case n = 2 we first use $u(x, 0) = 2\sin(2x)$ which gives us that $A_n = 2$. We now can use $u_t(x, 0) = 0$ to find B_n . This gives us,

$$-cA_2 + c\sqrt{3}B_2 = 0.$$

So $B_2 = \frac{2}{\sqrt{3}}$. We can write the solution as,

$$u = e^{-ct} (2\cos(c\sqrt{3}t) + \frac{2}{\sqrt{3}}\sin(c\sqrt{3}t))\sin(2x).$$

5. Show that there are no solutions of

$$\Delta u = f$$
, in D , $\frac{\partial u}{\partial n} = g$, on bdy D

in three dimensions, unless

$$\iiint_D f \, dx \, dy \, dz = \iint_{\text{bdy}(D)} g \, dS \, .$$

For this question, we use Green's identity.

$$\iiint_{D} f \, dA = \iiint_{D} \Delta u \, dA \,,$$
$$= \iiint_{D} \nabla \cdot \nabla u \, dA \,,$$
$$= \iint_{\partial D} \nabla u \cdot \vec{n} \, dS \,,$$
$$= \iint_{\partial D} \frac{\partial u}{\partial n} \, dS \,,$$
$$= \iint_{\partial D} g \, dS \,.$$