From Douglas West, Intro to Graph Theory

1. alpha'(G) is the matching number, i.e the size of a maximum matching. beta'(G) is the size of
the smallest edge cover. An edge cover is a set of edges L so that each edge in G is incident with
at least one edge of L. Cuong, Thursday, Jan. 30.

3.1.22, Theorem. (Gallai [1959]) If G is a graph without isolated vertices, then

o' (G) + B'(G) = n(G).

Proof: From a maximum matching M, we will construct an edge cover of size
n{G) — |M|. Sinee a smallest edge cover is no bigger than this cover, this will
imply that g'(G) = n(G) — &'(G). Also, from a minimum edge cover L, we
will construct a matching of size n(G) — |L]|. Since a largest matching is no
smaller than this matching, this will imply that «'(G) > n(G) — g'(G). These
two inequalities complete the proof.

Let M be a maximum matching in G. We construct an edge cover of G by
adding to M one edge incident to each unsaturated vertex. We have used one
edge for each vertex, except that each edge of M takes care of two vertices, so
the total size of this edge cover is n(G) — | M|, as desired.

Now let L be a minimum edge cover. If both endpoints of an edge ¢ belong
to edges in L other than e, then ¢ € L, since L — {e} is also an edge cover.
Hence each component formed by edges of L has at most one vertex of degree
exceeding 1 and is a star (a tree with at most one non-leaf). Let k be the number
of these components. Since L has one edge for each non-central vertex in each
star, we have |L| = n(G) — k. We form a matching M of size k = n(G) — |L| l'ly
choosing one edge from each star in L.

3.1.23. Example. The graph below has 13 vertices. A matching of size 4 ap-
pears in bold, and adding the =olid edges yields an edge cover of size 9. The
dashed edges are not needed in the cover. The edge cover consists of four stars;
from each we extract one edge (bold) to form the matching. [ ]
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2. Dominating sets. Beth, Thursday, Feb. 7

3.1.26. Definition. In a graph G, a set § € V() is a dominating set if every
vertex not in § has a neighbor in 5. The domination number (G) is the
minimum size of a dominating set in G.

3.1.27. Example. The graph G below has a minimal dominating set of size 4
(circles) and a minimum dominating set of size 3 (squares): y(G) = 3. [ ]
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Berge [1962] introduced the notion of domination. Ore [1962) coined this
terminology, and the notation y(G) appeared in an early survey (Cockayne—
Hedetniemi [1977]). An entire book (Haynes—Hedetniemi-Slater [1998]) is
devoted to domination and its variations.

3.1.28. Example. Covering the vertex set with stars may not require as many
stars as covering the edge set. When a graph G has no isolated vertices, every
vertex cover is a dominating set, so ¥(G) < B(G). The difference can be large;
y(K) =1,but B(K,) =n -1 ]

When studying domination as an extremal problem, we try to obtain bounds
in terms of other graph parameters, such as the order and the minimum de-
gree. A vertex of degree k dominates itself and k other vertices; thus every
dominating set in a k-regular graph G has size at least n(G)/(k + 1). For every
graph with minimum degree k, a greedy algorithm produces a dominating set
not too much bigger than this.



3.1.30. Theorem. (Arnautov [1974], Payan [1975]) Every n-vertex Emph with
]

minimum degree k has a dominating set of size at most » Lf%',-*l-*-—

Proof: (Alon [1990]) Let G be a graph with minimum degree k. Given § C
V(G), let U be the set of vertices not dominated by 5. We claim that some
vertex y outside S dominates at least |U| (k + 1)/n vertices of U/. Each vertex
in U has at least k neighbors, so 3_ ., IN[vl| = || (k + 1). Each vertex of G
is counted at most n times by these |U| sets, so some vertex y appears at least
U] (k + 1)/n times and satisfies the claim.

We iteratively select a vertex that dominates the most of the remaining un-
dominated vertices. We have proved that when r undominated vertices remain,
after the next selection at most r(1 — (k 4+ 1)/n) undominated vertices remain,
Hence after n 542 steps the number of undominated vertices is at most

a(l - ﬁ'?_}nln[Hl]-'[Hi] < pe B+l 8

i+l

The selected vertices and these remaining undominated vertices together form
a dominating set of size at most n 1241 ]

3. Chromatic number of the Carthesian product of graphs. Nora, Thursday, Jan. 6.

5.1.9. Definition. The cartesian product of G and H, written G 0O H, is the
graph with vertex set V(G) x V(H) specified by putting (x, v) adjacent to
(', v}y if and only if (1) u = &' and vv' € E(H), or (2) v = v/ and uu’ € E(G).

5.1.10. Example. The cartesian product operation is symmetric; GOH = HOG.
Below we show C30Cy. The hypercube is another familiar example: Q; =
Q410 Kg when k = 1. The m-by-n grid is the cartesian product P, 0 F,.

In general, G 0 H decomposes into copies of i for each vertex of G and
copies of G for each vertex of H (Exercise 10). We use 0 instead of x to aveid
confusion with other product operations, reserving x for the cartesian product
of vertex sets. The symbol O, due to Ridl, evokes the identity Ko Kg = Cy. B
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5.1.11. Proposition. (Vizing [1963], Aberth [1964]) x (GoH ) = max{x (G), x (H)).

Proof: The cartesian product G 0 H contains copies of G and H as subgraphs,
80 x(GOH) = max(x(G), x(H)].

Let k = max|x(G), x(H)). To prove the upper bound, we produce a proper
k-coloring of GO H using optimal colorings of G and H. Let g be a proper x(G)-
coloring of G, and let h be a proper x(H)-coloring of H. Define a coloring f of
G0 H by letting f(x, v) be the congruence class of g(u) + h(v) modulo k. Thus
f assigns eolors to V(GO H) from a set of size k.

We claim that f properly colors GO H. If (u, v) and (v, v') are adjacent in
GoH, then g(u) + h{v) and g(u") + h(v') agree in one summand and differ by
between 1 and k in the other. Since the difference of the two sums is between
1 and k, they lie in different congruence classes modulo k. "
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The cartesian product allows us to compute chromatic numbers by comput-
ing independence numbers, because a graph G is m-colorable if and only if the
cartesian product GO K, has an independent set of size n(G) (Exercise 31).



4. Colouring with orientations. Kyle, Tuesday, Feb. 4

5.1.21. Theorem. Gallai-Roy—Vitaver Theorem (Gallai [1968], Roy [1967], Vi-
taver [1962]) If D is an orientation of G with longest path length /( D), then
x(G) < 1+ (D). Furthermore, equality holds for some orientation of G.
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Proof: Let D be an orientation of G, Let D' be a maximal subdigraph of D
that contains no cycle (in the example below, uv is the only edge of D not in D').
Note that D' includes all vertices of G. Color V(G) by letting f(v) be 1 plus the
length of the longest path in D that ends at v.

Let P be a path in I, and let u be the first vertex of P. Every path in D’
ending at » has no other vertex on P, since [V is acyclic. Therefore, each path
ending at u (including the longest such path) can be lengthened along P. This
implies that f strictly increases along each path in [,

The coloring f uses colors 1 through 1+/(D’) on V(D) (which is also V(G)).
We claim that f is a proper coloring of G. For each uv € E(D), there is a path in
D' between its endpoints (since uv is an edge of D' or its addition to D' creates
a cycle). This implies that f(u) # f(v), since f increases along paths of D',

To prove the second statement, we construct an orientation D* such that
I(D*) = x(G)— 1. Let f be an optimal coloring of G. For each edge uv in G,
orient it from u to vin D* if and only if f(u) < f(v). Since [ is a proper coloring,
this defines an orientation. Since the labels used by f increase along each path
in [)*, and there are only x () labels in f, we have I{D®) < y(G) = 1. [ |

5. Turan graphs. Note that the lemma corresponds to a problem on assignment 2. Thomas,
Tuesday, Feb. 4.

5.2.6. Definition. A complete multipartite graph is a simple graph G whose
vertices can be partitioned into sets so that ¥ «» v if and only if v and v be-
long to different sets of the partition. Equivalently, every component of G is
a complete graph. When k = 2, we write K,, _,, for the complete k-partite
graph with partite sets of sizes ny, ..., n; and complement K,, +--- + K,,.

We use this notation only for k > 1, since K, denotes a complete graph. A
complete k-partite graph is k-chromatic; the partite sets are the color classes
in the only proper k-coloring. Also, since a vertex in a partite set of size r
has degree #(G) — 1, the edges can be counted using the degree-sum formula
(Exercise 18). Which distribution of vertices to partite sets maximizes ¢(G)7?

5.2.7. Example. The Turdn graph. The Turédn graph T, , is the complete r-
partite graph with n vertices whose partite sets differ ir: size by at most 1. By
the pigeonhole principle (see Appendix A), some partite set has size at least
[n/r] and some has size at most [n/r |. Therefore, differing by at most 1 means
that they all have size |n/r] or [n/r].

Let a = |n/r]. After putting a vertices in each partite set, b = n — ra
remain, so T, , has b partite sets of size a + 1 and r — b partite sets of size a.
Thus the defining condition on T, , specifies a single isomorphism class. [ ]

5.2.8. Lemma. Among simple r-partite (that is, r-colorable) graphs with n
vertices, the Turdn graph is the unique graph with the most edges.



5.2.9. Theorem. (Turdn [1941]) Among the n-vertex simple graphs with no
r + 1-clique, 7, has the maximum number of edges.

Proof: The Turdn graph T, ,, like every r-colorable graph, has no r + 1-clique,
since each partite set contributes at most one vertex to each cligue. If we can
prove that the maximum is achieved by an r-partite graph, then Lemma 5.2.8
implies that the maximum is achieved by T, .. Thus it suffices to prove that if
G has no r + 1-clique, then there is an r-partite graph H with the same vertex
set as G and at least as many edges.

We prove this by induction on . When r = 1, G and H have no edges. For
the induction step, consider r > 1. Let G be an n-vertex graph with no r 4 1-
clique, and let x € V() be a vertex of degree k = A(G). Let G’ be the subgraph
of G induced by the neighbors of x. Since r is adjacent to every vertex in G’
and G has no r + l-clique, the graph G’ has no r-clique, We can thus apply the
induction hypothesis to G'; this yields an r — 1-partite graph H' with vertex set
N{x) such that e(H") = e(G").

Let H be the graph formed from H' by joining all of N(x) to all of § =
V(G) — N(x). Since § is an independent set, i is r-partite. We claim that
e(H) = e(G). By construction, e(H) = e(H") + kin — k). We also have ¢(G) =
e(G) + 3, .5 ds (v}, since the sum counts each edge of G once for each endpoint
it has outside V(G"). Since A(G) = k, we have ds(v) < k for each v € §, and
[Sl=n—k 80} cdg(v) <kin —k). As desired, we have

e(G)=e(G)+(n—kk < e(H") + kin — k) = e(H) ]
X X%
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6. Connectivity of k-critical graphs. Melanie, Thursday, Jan. 30

5.2.15. Lemma. (Kainen) Let G be a graph with x(G) > k, and let X, ¥ be a
partition of V(G). If G[X] and G[Y] are k-colorable, then the edge cut [X, ¥]
has at least k edges.

Proof: Let X;..... X,and I1,..., Vi be the partitions of X and ¥ formed by the
color classes in proper k-colorings of G[X] and G[¥]. If there is no edge between
X; and ¥, then X, UY; is an independent set in G. We show that if |[X, ¥]| <k,
then we can combine color classes from G[X] and G[¥] in pairs to form a proper
k-coloring of G.

Form a bipartite graph H with vertices X;,..., X, and ¥, ..., ¥;, putting
X;¥; € E(H) if in G there is no edge between the set X; and the set ¥;. If
|[X, ¥]| < k, then H has more than k(k — 1) edges. Since m vertices can cover at
most km edges in a subgraph of K, ,, E(H) cannot be covered by k — 1 vertices.
By the Kinig—Egerviry Theorem, H therefore has a perfect matching M.

In G, we give color i to all of X; and all of the set ¥; to which it is matched
by M. Since there are no edges joining X; and Y}, doing this for all i produces a
proper k-coloring of G, which contradicts the hypothesis that x(G) = k. Hence
we conclude that |[X, ¥]| = k. [ ]
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5.2.16. Theorem. (Dirac [1953]) Every k-critical graph is k — l-edge-connected.

Proof: Let G be a k-critical graph, and let [X, ¥] be a minimum edge cut. Since
G is k-critical, G[X] and G[¥] are k& — 1-colorable. Applied with k — 1 as the
parameter, Lemma 5.2.15 then states that |[X, ¥]| = k — L. ]

7. Theorem by Berge that a matching is maximum if and only if there is no augmenting path. For
proof see Notes3. - Poppy, Thursday, Jan. 30.



8. Stable marriage algorithm and proof (Kyle, Feb 11)
STABLE MATCHINGS (optional)

Instead of optimizing total weight for a matching, we may try to optimize
using preferences. Given n men and n women; we want to establish n “stable”
marriages. If man x and woman o are paired with other partners, but x prefers
a to his current partner and a prefers x to her current partner, then they might
leave their current partners and switch to each other. In this situation we say
that the unmatched pair (x. a) is an unstable pair.
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3.2.15. Definition. A perfect matching is a stable matching if it yields no
unstable unmatched pair.

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences listed
below, the matching {xa, yb, zd, wc) is a stable matching. ]

Men [x, y,z,w] Women [a,b,c,d]
a=b>c=>d T IEXEYE W
ra>c>b>d biy>w>x>3
icxdza=b ciwsXx>y>1
iczbrax>d dix>y>z>w

B o=
=

3.2.17. Algorithm. (Gale-Shapley Proposal Algorithm)

Input: Preference rankings by each of n men and n women.

Idea: Produce a stable matching using proposals by maintaining information
about who has proposed to whom and who has rejected whom.

Iteration: Each man proposes to the highest woman on his preference list whe
has not previously rejected him. If each woman receives exactly one proposal,
stop and use the resulting matching. Otherwise, every woman receiving more
than one proposal rejects all of them except the one that is highest on her
preference list. Every woman receiving a proposal says “maybe” to the most
attractive proposal received. [ ]

3.2,18, Theorem. (Gale—Shapley [1962]) The Proposal Algorithm produces a
stable matching.

Proof: The algorithm terminates (with some matching), because on each nen-
terminal iteration, the total length of the lists of potential mates for the men
decreases. This can happen only n? times.

Key Observation: the sequence of proposals made by each man is nonin-
creasing in his preference list, and the sequence of men to whom a woman says
“maybe” iz nondecreasing in her preference list, culminating in the man as-
signed. This holds because men propose repeatedly to the same woman until
rejected, and women say “maybe” to the same man until a better offer arrives.

If the result is not stable, then there is an unstable unmatched pair (x, a),
with x matched to b and y matched to a. By the key observation, x never
proposed to a during the algorithm, since a received a mate less desirable than
x. The key observation also implies that x would not have proposed to & without
earlier proposing to a. This contradiction confirms the stability of the result. ®

9. List chromatic number of complete bipartite graphs Emma

8.4.25. Proposition. (Erdis—Rubin-Taylor [1979]) If m = (*'); then K, is
not k-choosable.

Proof: Let X, ¥ be the bipartition of G = K, .. Assign the distinct k-subsets
of [2k — 1) as the lists for the vertices of X, and do the same for ¥. Consider a
choice function f. If f uses fewer than k distinct choices in X, then thereis a k-
set § € [2k — 1] not used, which means that no color was chosen for the vertex
of X having § as its list. If f uses at least k colors on vertices of X, then there
is a k-get § C [2k — 1] of colorz used in X, and no color can be properly chosen
for the vertex of ¥ with list . E



10. List colouring of planar graphs Hoa, Thursday, Feb. 13

8.4.32, Theorem. (Thomassen [1994b]) Planar graphs are 5-choosable.

Proof: Adding edges cannot reduce the list chromatic number, so we may re-
strict our attention to plane graphs where the outer face is a cycle and every
bounded face is a triangle. By induction on r((7), we prove the stronger result
that a coloring can be chosen even when two adjacent external vertices have
distinct lists of size 1 and the other external vertices have lists of size 3. For
the basis step (n = 3), a color remains available for the third vertex.

Now consider n > 3. Let v,, v; be the vertices with fixed colors on the
external cycle C. Let vy, ..., v, be V(C) in clockwise order.

Case 1: C has a chord vv; with 1 <i < j -2 < p—2 We apply the
induetion hypothesis to the graph consisting of the eycle vy, ... v, 05, ..., 0,
and its interior. This selects a proper coloring in which v;, v; receive some fixed
colors. Next we apply the induction hypothesis to the graph consisting of the
cyele v, vy, ..., v; and its interior to complete the list coloring of G.

‘Case 2: C has nochord. Let vy, uy, ..., s, vs be the neighbors of v in order
(8 = p is possible). Because bounded faces are triangles, G contains the path
P with vertices v, w1, ..., U, V3. Since C is chordless, u;, .... i are internal
vertices, and the outer face of G' = G — vg is bounded by a cycle C' in which P
replaces vy, vz v3.

Let ¢ be the color assigned to vy. Since |L(vz)| = 3, we may choose distinct
colors x, y € L(vz) — [c}. We reserve x, y for possible use on vs by forbidding x, y
from wuy, ..., un. Since |L(u;)| = 5, we have [L{;) — [x, ¥}| = 3. Hence we can
apply the induction hypothesis to G', with w4, ..., u, having lists of size at least
3 and other vertices having the same lists as in G. In the resulting coloring,
vy and u1,..., uw have colors outside [x, y}. We extend this coloring to G by
choosing for v; a color in [x, v} that does not appear on vs in the coloring of G'. B
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Next round: graph models

Copy model -- Krapitsky and Redner

Geographic Threshold Model — Bradonjic, Hagberg, Percus
Kronecker graph model — Leskovec et al.

Ranking model -- Menczer

Random dot product graphs Young and Scheinerman

HOT model — Fabrikant, Koutsoupias, Papadimitriou
Geo-protean — Bonato, Janssen, Pralat

Grid plus long links -- Kleinberg

Scalefree percolation — Dreyfus, v.d. Hofstad, Hooghiemstra
Geometric Preferential Attachment — Flaxman, Frieze, Vera



