MATH 5330 ASSIGNMENT 6

BEN CAMERON
B00636435
DAVID SAMUEL
B00643629
MARCH 4, 2014

Question 1

Solution: Let G be a k-regular graph of size n, so every vertex has degree k.
(a) We claim that $\chi_{l}(G) \leq k+1$. To see this, assign lists of size $k+1$ to each vertex of $V(G)$, let $V(G)$ be ordered with any order and colour greedily. When colouring v_{i} in this greedy colouring there will be at most k colours used in the neighbourhood of v_{i} and since v_{i} was assigned a list of size $k+1$, there will be at least one colour remaining in $v_{i}^{\prime} s$ list that v_{i} can be coloured with. Therefore G is $(k+1)$-choosable so $\chi_{l}(G) \leq k+1$.
(b) Suppose $L: V(G) \rightarrow \mathcal{P} A$ is a list assignment of G so that $|L(v)|=k$ for all $v \in V(G)$. Order $V(G)$ at random and apply the greedy algorithm. By this we mean for each v_{i} if there is a colour in its list that can be used to colour v_{i}, then colour it, otherwise leave it uncoloured. Define the random variable X to be the number of vertices that can be coloured in this way. For each $v \in V(G)$ define the indicator variable X_{v} as follows:

$$
X_{v}= \begin{cases}1 & \text { if } v \text { can be coloured } \\ 0 & \text { otherwise }\end{cases}
$$

Now $E\left(X_{v}\right)=\mathbb{P}\left(X_{v}=1\right) \geq \mathbb{P}\left(X_{v}\right.$ is ordered before at least one of its k neighbours $) \geq$ $\frac{k}{k+1}$. So the linearity of expectation gives:

$$
\begin{aligned}
E(X) & =\sum_{v \in V(G)} E\left(X_{v}\right) \\
& \geq \sum_{v \in V(G)} \frac{k}{k+1} \\
& =n \cdot \frac{k}{k+1}
\end{aligned}
$$

So by the pigeonhole property of expectation, there exists an ordering of $V(G)$ such that there exists a list colouring under L of at least $n \cdot \frac{k}{k+1}$ vertices of G.
(c) Suppose $1 \leq t \leq k$. Suppose $L: V(G) \rightarrow \mathcal{P} A$ is a list assignment of G so that $|L(v)|=t$ for all $v \in V(G)$. Order $V(G)$ at random and apply the greedy algorithm. Define the random variable X to be the number of vertices that can be coloured with the greedy algorithm. For each $v \in V(G)$ define the indicator variable X_{v} as follows:

$$
X_{v}= \begin{cases}1 & \text { if } v \text { can be coloured } \\ 0 & \text { otherwise }\end{cases}
$$

Now $E\left(X_{v}\right)=\mathbb{P}\left(X_{v}=1\right) \geq \mathbb{P}\left(X_{v}\right.$ is ordered before at least $k-t$ of its k neighbours $) \geq$ $\frac{t}{k+1}$. So the linearity of expectation gives:

$$
\begin{aligned}
E(X) & =\sum_{v \in V(G)} E\left(X_{v}\right) \\
& \geq \sum_{v \in V(G)} \frac{t}{k+1} \\
& =n \cdot \frac{t}{k+1}
\end{aligned}
$$

So by the pigeonhole property of expectation, there exists an ordering of $V(G)$ such that there exists a list colouring under L of at least $n \cdot \frac{t}{k+1}$ vertices of G.

Question 2

Solution: Consider $G=G(n, p)$. Let X be the number of edges in G.
(a) For all subsets S such that $|S|=2$ of $V(G)$ define the indicator variable X_{S} as follows:

$$
X_{S}= \begin{cases}1 & \text { if } G[S] \cong K_{2} \\ 0 & \text { otherwise }\end{cases}
$$

I.e, $X_{S}=1$ if the vertices in S are joined by an edge. Now $X=\sum_{S \subseteq V(G),|S|=2} X_{S}$, so by the linearity of expectation,

$$
E(X)=\sum_{S \subseteq V(G),|S|=2} E\left(X_{S}\right)
$$

(a) We want to find $E\left(X_{S}\right)=\mathbb{P}\left(X_{S}=1\right)$, which by definition of $G(n, p)$ is p. So from part (a), we have:

$$
\begin{aligned}
E(X) & =\sum_{S \subseteq V(G),|S|=2} E\left(X_{S}\right) \\
& =\sum_{S \subseteq V(G),|S|=2} p \\
& =\binom{n}{2} p
\end{aligned}
$$

(b) Markov's inequality gives:

$$
\mathbb{P}(X \geq n) \leq \frac{E(X)}{n}=\frac{1}{n} \cdot\binom{n}{2} p
$$

(c) Let p be a function of n, and assume that $p=o\left(\frac{1}{n}\right)$. Now by (b), we know that

$$
\begin{aligned}
\mathbb{P}(X \geq n) & \leq \frac{1}{n} \cdot\binom{n}{2} p \\
& \leq n p \\
& \rightarrow 0 \text { as } n \rightarrow \infty\left(\text { Since } p=o\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

So a.a.s. $e(G) \leq n-1$ and since a graph on n vertices must have at least $n-1$ edges, a.a.s G is not connected.
(d) By definition of $G(n, p)$, the variables $X_{S}^{\prime} s$ are independent so $\operatorname{Cov}\left(X_{S}, X_{T}\right)=0$ if $S \neq T$ and therefore we have linearity of variance. Also, $\operatorname{Var}\left(X_{S}\right)=E\left(\left(X_{S}\right)^{2}\right)-$
$E\left(X_{S}\right)^{2}=p-p^{2}$. Therefore,

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}\left(\sum_{S \subseteq V(G),|S|=2} X_{S}\right) \\
& =\sum_{S \subseteq V(G),|S|=2}\left(\operatorname{Var} X_{S}\right) \\
& =\sum_{S \subseteq V(G),|S|=2}\left(p-p^{2}\right) \\
& =\binom{n}{2} p(1-p) \\
& =E(X)(1-p)
\end{aligned}
$$

(e) We first note that $n-1=\frac{2 E(X)}{n p}$. Now,

$$
\begin{aligned}
\mathbb{P}(X \geq n) & =1-\mathbb{P}(X \leq n-1) \\
& \geq 1-\mathbb{P}\left(|X-E(X)| \geq \frac{(2-n p) E(X)}{n p}\right) \\
& \geq 1-\frac{(n p)^{2} \operatorname{Var}(X)}{(n p-2)^{2} E(X)^{2}}(\text { by Chebeshev's inequality applied to } \mathbb{P}(X \leq n-1)) \\
& =1-\frac{n^{2} p^{2}(1-p)}{(n p-2)^{2} E(X)}(\text { By part (d)) }
\end{aligned}
$$

(f) Now, if p is constant, we see that:

$$
\begin{aligned}
\mathbb{P}(X \geq n) & \geq 1-\frac{n^{2} p^{2}(1-p)}{(n p-2)^{2} E(X)}(\text { By part }(\mathrm{e})) \\
& =1-\frac{2 p(1-p)}{\left(p-\frac{2}{n}\right)^{2}(n(n-1))} \\
& \rightarrow 1-0=1 \text { as } n \rightarrow \infty \text { since } p \text { is constant }
\end{aligned}
$$

Therefore, $\mathbb{P}(X \geq n) \rightarrow 1$ as $n \rightarrow \infty$. Also, since a graph with more than $n-1$ edges must contain a cycle, a.a.s. G contains a cycle.

Question 3

Solution: Consider the graph model $G=G(n, p)$.
(a) Let X be the random variable counting the number of triangles. For all subsets S such that $|S|=3$ of $V(G)$ define the indicator variable X_{S} as follows:

$$
X_{S}= \begin{cases}1 & \text { if } G[S] \cong K_{3} \\ 0 & \text { otherwise }\end{cases}
$$

Now, $E\left(X_{S}\right)=\mathbb{P}\left(X_{S}=1\right)=p^{3}$, so by the linearity of expectation,

$$
\begin{aligned}
E(X) & =\sum_{S \subseteq V(G),|S|=3} E\left(X_{S}\right) \\
& =\sum_{S \subseteq V(G),|S|=3} p^{3} \\
& =\binom{n}{3} p^{3}
\end{aligned}
$$

(b) $\operatorname{Var}(X)=\operatorname{Var}\left(\sum X_{S}\right)=\sum_{s \subseteq V(G):|S|=3} \operatorname{Var}\left(X_{S}\right)+\sum_{S \neq T} \operatorname{Cov}\left(X_{S}, X_{T}\right)\left(^{*}\right)$. Now $\operatorname{Var}\left(X_{S}\right)=E\left(X_{S}^{2}\right)-\left(E\left(X_{S}\right)\right)^{2}=p^{3}-p^{6} \leq p^{3}$. Also, for $S \neq T$,

$$
\begin{aligned}
\operatorname{Cov}\left(X_{S}, X_{T}\right) & =E\left(X_{S} X_{T}\right)-E\left(X_{S}\right) E\left(X_{T}\right) \\
& =\mathbb{P}\left(X_{S} X_{T}=1\right)-p^{6} \\
& \leq p^{5}-p^{6} \quad(\text { since } 2 \text { triangles may share at most } 1 \text { edge }) \\
& \leq p^{5}
\end{aligned}
$$

So from (*),

$$
\begin{aligned}
\operatorname{Var}(X) & \leq \sum_{s \subseteq V(G):|S|=3} p^{3}+\sum_{S \neq T} p^{5} \\
& \leq\binom{ n}{3} p^{3}+4 \cdot\binom{n}{4} p^{5} \quad(\text { since every subset of } 4 \text { vertices contains } 4 \text { possible triangles) } \\
& \leq n^{3} p^{3}+n^{4} p^{4} \quad(\text { since } p \leq 1)
\end{aligned}
$$

(c) Claim: The threshold function for G has a triangle is $f(n)=\frac{1}{n}$.
i) If $\frac{1}{n} \ll p$, then by Chebyshev's inequality:

$$
\begin{aligned}
\mathbb{P}(X=0) & \leq \mathbb{P}(|X-E(X)| \geq E(X)) \\
& \leq \frac{\operatorname{Var}(X)}{E(X)^{2}} \\
& \leq \frac{n^{3} p^{3}+n^{4} p^{4}}{\left(\binom{n}{3} p^{3}\right)^{2}} \\
& =\theta\left(\frac{1}{n^{3} p^{3}}+\frac{1}{n^{2} p^{2}}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty\left(\text { since } \frac{1}{n} \ll p\right)
\end{aligned}
$$

ii) If $p \ll \frac{1}{n}$, then by Markov's inequality:

$$
\begin{aligned}
\mathbb{P}(X \geq 1) & \leq E(X) \\
& \leq(n p)^{3} \\
& \rightarrow 0 \text { as } n \rightarrow \infty\left(\text { since } p \ll \frac{1}{n}\right)
\end{aligned}
$$

Therefore, $f(n)=\frac{1}{n}$ is a threshold function for " G has a triangle".

Question 5

For every graph H there exists a function $p=p(n)$ so that $\lim _{n \rightarrow \infty} p(n)=0$ but a.a.s a graph G produced by $G(n, p)$ contains an induced copy of H.

Proof. We prove the result by the probabilistic method. Fix H, a finite graph. Let X be the number of induced subgraphs of $G(n, p)$ of size $|H|$ that are isomorphic to H. We define the indicator variable X_{S} for all $S \subseteq V(G)$ with $|S|=|H|$ as follows:

$$
X_{S}= \begin{cases}1 & \text { if } G[S] \cong H \\ 0 & \text { otherwise }\end{cases}
$$

Let $m=\max \left\{e(H),\binom{|H|}{2}-e(H)\right\}$. We claim that if $p(n)=\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}$, then a.a.s G contains an induced copy of H. Now $X=\sum_{S \subseteq V(G):|S|=|H|} X_{s}$ and $E\left(X_{S}\right)=P\left(X_{S}=\right.$ 1) $\geq p^{e(H)}(1-p)^{\binom{(H \mid}{2}-e(H)}$, so

$$
\begin{aligned}
E(X) & =E\left(\sum_{S \subseteq V(G):|S|=|H|} X_{S}\right) \\
& =\sum_{S \subseteq V(G):|S|=|H|} E\left(X_{S}\right) \\
& \geq \sum_{S \subseteq V(G):|S|=|H|} p^{e(H)}(1-p)^{\binom{|H|}{2}-e(H)} \\
& =\binom{n}{|H|} p^{e(H)}(1-p)^{\binom{|H|}{2}-e(H)} \\
& \geq\left(\frac{n}{|H|}\right)^{|H|} p^{m}(1-p)^{m} \quad \text { since } p,(1-p)<1 \\
& =\left(\frac{n}{|H|}\right)^{|H|}\left(\frac{1}{n}\right)^{\frac{m(|H|-1)}{m}}\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{m} \\
& =\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{m}
\end{aligned}
$$

And since $|H|$ and m are constants, $\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{m} \rightarrow 1$ as $n \rightarrow \infty$, so,

$$
\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{m} \rightarrow \infty \text { as } n \rightarrow \infty
$$

Therefore, $E(X) \rightarrow \infty$ as $n \rightarrow \infty$.

We now compute the variance of X so that we may apply Chebyshev's Inequality to show that $\mathbb{P}(X=0) \rightarrow 0$ as $n \rightarrow \infty$.

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{S \subseteq V(G):|S|=|H|} \operatorname{Var}\left(X_{S}\right)+\sum_{S \neq T} \operatorname{Cov}\left(X_{S}, X_{T}\right) \\
& =\sum_{S \subseteq V(G):|S|=|H|}\left(E\left(X_{S}^{2}\right)-E\left(X_{S}\right)^{2}\right)+\sum_{S \neq T}\left(E\left(X_{S} X_{T}\right)-E\left(X_{S}\right) E\left(X_{T}\right)\right) \\
& \leq E(X)-\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m}+\sum_{S \neq T}\left(E\left(X_{S} X_{T}\right)\right)-\left(\begin{array}{c}
n \\
|H| \\
2
\end{array}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m} \\
& \leq 2 E(X)-\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m}(*)
\end{aligned}
$$

Now, by Chebyshev,

$$
\begin{aligned}
\mathbb{P}(X=0) & \leq \mathbb{P}(|E(X)-X| \geq E(X)) \\
& \leq \frac{\operatorname{Var}(X)}{E(X)^{2}} \\
& \leq \frac{2 E(X)-\left(\frac{n}{|H|^{H \mid}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m}}{E(X)^{2}}\left(\text { by }\left(^{*}\right)\right. \\
& \leq \frac{2}{E(X)}-\frac{\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m}}{E(X)^{2}} \\
& \rightarrow 0-0=0 \text { as } n \rightarrow \infty\left(\text { since } E(X) \rightarrow \infty \text { and }\left(\frac{n}{|H|^{|H|}}\right)\left(1-\left(\frac{1}{n}\right)^{\frac{|H|-1}{m}}\right)^{2 m}<E(X)\right.
\end{aligned}
$$

Therefore, $\mathbb{P}(X \geq 1)=1-\mathbb{P}(X=0) \rightarrow 1$ as $n \rightarrow \infty$. So a.a.s. G contains a copy of H.

