# Topics in Graph Theory - Problem set 4 <br> Due Tuesday, Feb. 11, beginning of class 

1. Review Cuong's and Poppy's presentations of Jan 30. (a) Find a maximum matching in the circulant graph $C(13,3)$. Prove that it is a maximum matching. (b) Find a minimum edge cover in the same graph, and use Gallai's theorem to show it is a minimum edge cover. (c) Find a matching $M$ and edge cover $E$ in the same graph so that $|M|+|E|=n$ but $M$ is not maximum and $E$ is not minimum.
2. Review Melanie's presentation of Jan. 30. Let $G$ be the circulant graph $C(16,3)$, and $H$ be the circulant graph $C(11,2)$. Label vertices $0,1,2, \ldots$ in each. Find 4 -colourings of $G$ and $H$. (b) Consider the graph $K$ formed by adding the following 4 edges: one edge between vertices labelled 0 in $G$ and $H$, one edge between the vertex labelled 1 in $G$ and the vertex labelled 2 in $H$, two edges between the vertex labelled 2 in $G$ and the vertices labelled 9 and 10 in $H$. Use the methods from Melanie's presentation to find a 4 -colouring of $K$.
3. Consider the following list assignment for the line graph of $K_{4,4}$. Find a list colouring, using the method shown in class. (Just giving a list colouring will not count). First find the desired orientation using a latin square. Make sure the out-degree of each vertex is 3 . Then, in each step, draw the colour graph, and identify the kernel you use ( you do not need to use Gale-Shapley, but can find it by inspection).

|  | $y_{1}$ | $y_{2}$ | $y_{3}$ | $y_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | $1,2,3,4$ | $1,2,4,5$ | 1.3 .4 .5 | $2,3,4,5$ |
| $x_{2}$ | $2,3,4,5$ | $2,3,4,5$ | $1,2,3,4$ | $1,2,3,5$ |
| $x_{3}$ | $1,2,3,4$ | $2,3,4,5$ | $1,3,4,5$ | $1,3,4,5$ |
| $x_{4}$ | $2,3,4,5$ | $1,2,4,5$ | $1,2,4,5$ | $1,2,3,5$ |

4. Let $G$ be a graph with chromatic number $k$ and size $n$. Fix an integer $t, 1 \leq t<k$. Show that $G$ has an induced subgraph $H$ of size at least $(t / k) n$ which is $t$-colourable. (In other words, show that at least a fraction $t / k$ of the vertices can be coloured if only $t$ colours are available.)
5. [MATH 4330/CSCI 4115] Show that for interval graphs, the list colouring number equals the chromatic number.
6. [MATH 5330] Let $G=(V, E)$ be a 4-choosable graph, of size $n$. Let $L$ be a list assignment for $G$ so that each list is of size 2. (a) Show that at least half of the vertices of $G$ can be coloured with these lists. Precisely, show that there is a set $W \subset V$ so that $G[W]$ with list assignment given by $L$ restricted to $W$ has a list colouring, and $|W| \geq n / 2$. In general, it is an open conjecture whether, for a $k$-choosable graph of size $n$, and a list assignment with lists of size $t<k$, there always is a subgraph of size $(t / k) n$ which can be coloured with those lists. (b) Part (a) shows that the conjecture is true for $k=4, t=2$. Generalize this approach to other values of $t$ and $k$. Note: the case $t=2, k=3$ is still wide open!
