# Topics in Graph Theory - Problem set 5 

Due Tuesday, Feb. 25, beginning of class

1. A dominating set of a graph $G=(V, E)$ is a set $A \subseteq V$ so that for each vertex $v \in V$, either $v$ is in $A$ or $v$ has a neighbour in $A$. Let $\gamma(G)$ denote the size of the smallest dominating set of $G$. A doubly indenpendent set is a set $B \subseteq v$ so that no two vertices in $B$ have a common neighbour. In other words, the graph distance between any two vertices in $B$ is at least three. Let $\alpha_{2}(G)$ denote the size of the largest doubly indenpendent set of $G$.
(a) Find $\gamma$ and $\alpha_{2}$ for the circulant graphs $C(n, k)$.
(b) Show that, for all graphs $G, \alpha_{2}(G) \leq \gamma(G)$. Show also that this implies that, if a graph $G$ has a dominating set and a doubly independent set of equal size, then both are optimal.
(c) Show that for all paths $P_{n}, \gamma\left(P_{n}\right)=\alpha_{2}\left(P_{n}\right)$.
2. In class, we saw the binary random graph model, $G(n, p)$. There is another random graph model, the uniform random graph model, $G(n, M)$, defined as follows: Given $n$ nodes, add exactly $M$ edges to the graph at random.
(a) Give the formal probability space $(\Omega, \mathcal{F}, \mathbb{P})$ corresponding to this model.
(b) Let $n=5$. Calculate the probability (for any $M$ ) that of the event "G has a cycle".
3. Consider the Gallai-Roy-Vitaver theorem presented by Kyle, which states that, if $G$ has a orientation where $I(G)$ is the length of the longest path, then $\chi(G) \leq I(G)$. Can we also conclude that $\chi_{\ell}(G) \leq I(G)$ ? Motivate your answer.
4. Consider the Erdös-Rubin-Taylor result presented by Emma. Use the result to obtain a lower bound $k$ on the list chromatic number $\chi_{\ell}\left(K_{10,10}\right)$. Give the specific unfeasible list assignment with lists of size $k-1$ which shows that the minimum size of the lists has to be at least $k$.
5. Consider graphs $G$ formed according to the model $G(n, p)$ where $p=$ $o(1)$. Show that, asymptotically almost surely, $G$ is a forest (so $G$ has no cycles). Partially done in class. Consider the variable $X$ counting the number of cycles, show that $E(X)$ is small, then use Markov's inequality..
6. [MATH 5330] Show that any graph $G$ contains a bipartite subgraph (not necessarily induced!) which contains at least half of the edges. Use the probabilistic method.
7. [MATH 4330/CSCI 4115] Give a formula for the expected number of isolated vertices (vertices of degree 0 ) in the random graph $G(n, p)$ where $p \in(0,1)$ is a constant. Give the asymptotic behaviour of this expected number What happens to the expectation when $n \rightarrow \infty$.
