Topics in Graph Theory - Problem set 6

Due Tuesday, March 4, beginning of class

1. Let G be a k-regular graph of size n, so every vertex has degree k.
(a) Show that $\chi_{\ell}(G) \leq k+1$. No probability required.
(b) Suppose a list of size k is assigned to each vertex of G. Now consider the problem of colouring as many vertices as possible with colours from their list. Show, using a probabilistic argument, that at least $\left(\frac{k}{k+1}\right) n$ vertices can be coloured. Hint: use greedy colouring using a random ordering. Review the argument for finding an independent set using a random ordering given in class.
(c) Extend the argument to show that, with lists of size $t, 1 \leq t \leq k$, at least $\left(\frac{t}{k+1}\right) n$ vertices can be coloured.
2. Consider $G(n, p)$. Let X be the number of edges in G. (a) Find $E(X)$ using indicator variables. (a) Find the expected value of X, in terms of n and p.
(b) Use Markov's inequality to give an upper bound for $P(X \geq n)$.
(c) Let p be a function of n, and assume that $p=o(1 / n)$. Use the result from (b) to conclude that a.a.s. the graph is not connected. Use and state a basic result about the number of edges in a graph and connectedness.
(d) Find the variance of X, in terms of n and p. Use the variance and covariance of the indicator variables.
(e) Use Chebyshev's inequality to give a lower bound for $P(X \geq n)$.
(f) Let p be a constant. Use the result from (e) to conclude that a.a.s. the graph contains a cycle. Use and state a basic result about the number of edges and the existence of a cycle in a graph.
3. Consider the graph model $G(n, p)$.
(a) Let X be the random variable counting the number of triangles. Find the expected value of X, in terms of n and p.
(b) Find the variance of X, in terms of n and p. Use the variance and covariance of the indicator variables.
(c) Consider p as a function of n. Find a threshold for the property " G has a triangle". I.e. find a function $f(n)$ such that, if $p \ll f(n)$, then the probability that G produced by $G(n, p)$ has a triangle goes to zero as n goes to infinity, and if $p \gg f(n)$ then the probability that G has
a triangle goes to one. Use Markov's and Chebyshev's inequalities to prove your result.
4. [MATH 4330, CSCI 4115] Consider $G(n, p)$, with $p \in(0,1)$ constant. Show that a.a.s. a graph G produced by $G(n, p)$ has diameter 2 .
5. [MATH 5330] Show that for every graph H there exists a function $p=p(n)$ so that $\lim _{n \rightarrow \infty} p(n)=0$ but a.a.s a graph G produced by $G(n, p)$ contains an induced copy of H.
