Topics in Graph Theory - Problem set 7

Due Tuesday, March 11, beginning of class

1. Consider Polya's urn problem as presented in class on March 6, but now assume that at time 0 there are two white balls and one black ball in the urn. Let X_{t} be the proportion of white balls in the urn at time t. Compute the expected value $E\left(X_{t}\right)$. Use conditional expectation.
2. Consider the following variation of the preferential attachment model. The process builds a sequence of graphs G_{t} as follows. G_{1} consists of a vertex and a loop at that vertex (so the degree of that vertex is one). At each time step $t>1$, G_{t+1} is formed by adding one vertex, v_{t+1}, to G_{t}, and one edge from v_{t+1} to a vertex of G_{t} chosen according to a link probability proportional to $\operatorname{deg}(u, t)+a$ ($\operatorname{deg}(u, t)$ is the degree of . Here a is parameter of the model. This question asks you to analyze the degree distribution of this model in a way similar as done for the original PA model in class on March 6.
(a) Precisely, for any $u \in V\left(G_{t}\right)$, the probability that v_{t+1} links to u equals $P\left(v_{t+1} \sim u\right)=c(\operatorname{deg}(u, t)+a)$. The constant c is determined by the fact that all probabilities have to add to 1 , so

$$
\sum_{v \in V\left(G_{t}\right)} P\left(v_{t+1}, u\right)=1
$$

Determine c.
(b) Use conditional expectation to find a recurrence relation for $\operatorname{deg}\left(v_{i}, t\right)$, where v_{i} is the vertex born at time i, and the recurrence should be in terms of t.
(c) Use a DE-based method to find an approximate expression for $E\left(\operatorname{deg}\left(v_{i}, t\right)\right.$. To do this, assume that the growing process ends at time $t=n$, and define the function f so that, for all $1 \leq i \leq t \leq n$,

$$
f\left(\frac{i}{n}\right)=\frac{\mathbb{E}\left(\operatorname{deg}\left(v_{i}, t\right)\right)}{n}
$$

(d) Use the expression found in (b) to find an approximate expression for $N_{\geq k}$, the number of vertices of degree at least k, where the assumption is that the degree of a vertex is approximately equal to its expected value.
(e) Does the resulting graph have a power law degree distribution? If so, what is the exponent? Explain your answer.
(f) What effect does the parameter a have on the degree distribution? What happens if a is negative?

