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A proper (vertex) colouring of a graph G is an assignment of one colour
to each vertex of G, so that adjacent vertices receive different colours. Given
a colouring, the set of vertices receiving one particular colour is called a
colour class. A graph that has a proper colouring with k colours is called a
k-colourable graph.

The chromatic number of a graph G (notation: χ(G) is the minimum
number of colours required for a proper colouring of the graph. To show
that any particular graph G has a particular chromatic number χ(G) = k
two aspects must be shown: (1) show that it is possible to colour G with
k colours (this can be done by giving an explicit colouring, or by giving a
proven colouring method), and (2) show that it is not possible to colour G
with k − 1 colours (this can be done by finding an induced subgraph that
cannot be coloured by k − 1 colours). A graph with chromatic number k is
called a k-chromatic graph.

Example: the circulant graph C(n; k) is defined of the graph with vertex
set {0, 1, . . . , n − 1}, where vertex i is adjacent to vertices i + 1, . . . i + k,
where addition is taken modulo n. Since vertices 0, 1, . . . , k are all pairwise
adjacent, we need at least k + 1 colours. Assume each vertex i is assigned
colour i mod (k+ 1). Is this a proper colouring? Assume vertex i and j are
adjacent and receive the same colour. This means that |j − i| ≤ k mod n,
while |j − i| = 0 mod k + 1. This can only happen if k + 1 does not divide
n. Thus, when k + 1 divides n, this colouring is a proper colouring, and
χ(n; k) = k + 1.

An independent set in a graph G is a set of vertices of G so that no two
of them are adjacent. The independence number of G (notation α(G)) is the
size of the largest independent set in G.

A clique in a graph G is a set of vertices of G so that every two of them
are adjacent. The clique number of G (notation ω(G)) is the size of the
largest clique in G.

We use n(G) to denote the number of vertices of G, and m(G) to denote
the number of edges of G. We also use n and m if it is clear from the context
which graph is referred to.

Theorem 1. For every graph G, χ(G) ≥ ω(G) and χ(G) ≥ n(G)/α(G).
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Proof. In a proper colouring, every vertex in a clique must receive a different
colour. This proves the lower bound on χ(G). For the upper bound, note
that every colour class of a proper colouring must be an independent set,
and thus has size at most α(G). Since every vertex must receive a colour,
the result follows.

Open problem (Erdös-Faber-Lovász conjecture) Suppose a graph
is the union of k complete graphs of size k, where any two complete graphs
have at least one vertex in common. Does this graph have chromatic number
k?

One of the most well-known colouring algorithm is greedy colouring. It is
a heuristic, which means that it does not always lead to an optimal colouring.
In fact, the gap between the number of colours used by the greedy algorithm
and the chromatic number may be arbitrarily large.

The Greedy Colouring Heuristic
Input: a graph G
Output: a proper (vertex) colouring of G

1. Arrange the vertices of G in linear order v1, v2, . . . , vn.

2. Colour the vertices one by one in this order, assigning to vi the smallest
positive integer (colour) not assigned to one of its already-colouried
neighbours.

An example where the greedy colouring can do very badly is the following.
Let G be a bipartite graph with bipartition X = {x1, . . . , xn} and Y =
{y1, y2, . . . , yn}, where for each i, xi is adjacent to all vertices in Y except yi.
Now choose the ordering so that v2i+1 = xi and v2i+2 = yi for i = 1, . . . , n.
Then the greedy algorithm will assign both x1 and y1 colour 1, after which
colour 1 cannot be used on any other vertex. Similarly, xi and yi will be
assigned colour i. Thus, the greedy algorithm uses n colours, while only 2
colours are needed, since G is bipartite.

As the example above shows, the performance of the greedy algorithm
depends heavily on the linear order chosen. In fact, there always exists at
least one ordering that will give the optimal colouring. We use [n] to denote
the set {i : 1 ≤ i ≤ n}. Note that [0] = ∅.

Theorem 2. For every graph G, there exists a linear order of the vertices
such that the greedy algorithm uses χ(G) colours when following this order.

2



Proof. Fix graph G, and let k = χ(G). Let c : V (G) → [k] be a proper
colouring of G. Now order the vertices of G, v1, . . . , vn so that c(vi) ≤ c(vj)
whenever i < j, and let c∗ : V (G) → [k] be the greedy colouring obtained
from using this order. We claim that for each i, c∗(vi) ≤ c(vi). To prove
the claim, we use induction on i. Clearly, c∗(v1) = 1 ≤ c(v1). Now assume
the claim holds for all values less than i, and assume that c∗(vi) = `. By
our choice of ordering, this means that the already-coloured neighbours of
vi have colours 1, . . . , ` − 1. In particular, there must be a vertex vj with
j < i which is adjacent to vi and has c∗(vj) = ` − 1. By the induction
hypothesis, c(vj) ≥ c∗(vj), and by our choice of colouring, c(vi) ≥ c(vj).
Thus, c(vi) ≥ ` − 1, and since vi and vj are adjacent and c is a proper
colouring, this implies that c(vi) ≥ ` = c∗(vi). This completes the proof
of the claim. Using the claim, we see that the highest colour assigned by
c∗ must be at most k, and therefore c∗ uses at most k colours. Since G is
k-chromatic, c∗ uses exactly k colours.

Let ∆(G) be the maximum degree of G. Clearly the greedy colouring
never uses more than ∆(G) + 1 colours (since any vertex can be adjacent to
at most ∆(G) colours). This leads to our first upper bound on the chromatic
number.

Theorem 3. For each graph G, χ(G) ≤ ∆(G) + 1.

For general graphs, we cannot do much better than that. Brook’s Theo-
rem (see any basic graph theory text) gives an upper bound of ∆(G) for all
graphs for all graphs with a few simple exceptions.

Another upper bound can be obtained from the greedy colouring algo-
rithm via the concept of k-cores. The k-core of a graph G is the largest
induced subgraph of G where all vertices have degree at least k (this sub-
graph is unique. An algorithm to obtain the k-core is to successively remove
vertices of degree less than k until no more such vertices can be found. The
graph remaining after the algorithm stops is the k-core.

Theorem 4. If the k-core of G is empty, then χ(G) ≤ k.

Proof. Suppose the “peeling”described above is applied to obtain the k-core,
and let v1, . . . vn be the order in which vertices are removed. Since a vertex
is only removed when it has degree less than k in the remaining graph, we
see that for each i, vi has at most k − 1 neighbours in the graph induced
by vi+1, . . . , vn. Thus, we can apply the greedy colouring with the ordering
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vn, . . . v1 (thus, the last removed vertex is coloured first), and will need at
most k colours.

There are some classes for which the greedy colouring with a specific
ordering always gives an optimal colouring. We mention bipartite graphs,
and interval graphs.

Theorem 5. Let G be a connected bipartite graph, and assume that the
vertices are ordered so that, for all j > 1, vj is adjacent to at least one vertex
vi with i < j. Then the greedy colouring uses the optimal two colours.

Proof. Let G be a bipartite graph, and assume the vertices v1, . . . , vn are
ordered as stated. Assume, by contradiction, that the greedy algorithm is
applied, and for some vi a third colour is needed. Thus, vi has two coloured
neighbours, say vk and v` (k < i and ` < i) so that vk has colour 1 and
v` colour 2. By the restrictions on the ordering, there is a path of coloured
vertices from vk leading to v1 and back to v`. Since only two colours are used
on this path, and both endpoints are of different colour, this path has odd
length. Since v` and vk are both adjacent to v1, this means that G contains
an odd cycle, and thus is not bipartite. This completes the proof.

Note that the theorem above can be applied to each connected component
if the bipartite graph is not connected.

An interval graph is a graph G = (V,E) where each vertex v corresponds
to an interval [av, bv], and two vertices u and v are adjacent precisely when
their intervals overlap, i.e. when av ≤ au ≤ bv or au ≤ av ≤ bu.

Theorem 6. Let G be an interval graph. If the vertices are ordered according
to the start of their intervals, i.e. so that vi = [ai, bi] and vi < vj if ai <
aj, then the greedy colouring achieves an optimal colouring of G with ω(G)
colours

A graph G is perfect if, for each induced subgraph H of G, χ(G) = ω(H).
Note that the classes of bipartite graphs and interval graphs are closed

under taking induced subgraphs, i.e. any induced subgraph is also a member
of the class. Thus, from the theorems above we immediately obtain the
following result:

Theorem 7. All interval graphs and all bipartite graphs are perfect.
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How far from perfect can a graph be, i.e. how large can the difference be-
tween clique number and chromatic number get? The following construction
shows that this gap can be as large as you want.

Mycielski’s construction. This construction shows how to construct in
an iterative way, graphs Gk (k ≥ 2) which are triangle-free (so their clique
number is 2), but which have chromatic number k.

For k = 2, G2 = K2, the complete graph on two vertices. For k ≥ 2,
we construct Gk+1 from Gk as follows: Let the vertices of Gk be v1, . . . , vn.
Add n + 1 new vertices u1, . . . , un and w. For i = 1, . . . n, join ui to every
neighbour of vi in Gk, and to w. This is the construction; we now must show
that Gk+1 so constructed is triangle-free and has chromatic number k + 1.

First we show that Gk+1 has no triangles. Note that u1, . . . , un form an
independent set, and w is only adjacent to vertices ui. Also, by assumption,
Gk is triangle-free. Thus, any triangle in Gk+1 must consist of two vertices
vi and vj, and a vertex uk. However, uk is only adjacent to the neighbours
of vk, so vi and vj must both be neighbours of vk, which contradicts the fact
that Gk contains no triangles.

Next we show that χ(Gk+1) = k + 1. The easy part is the upper bound,
which we can find by defining a k+1 colouring: first, colour v1, . . . , vn with k
colours (this can be done since, by assumption, χ(Gk) = k). Then, give each
ui the same colour as vi, and give w colour k+ 1. Since ui is only adjacent to
w and to all neighbours of vi and has the same colour as vi, this is a proper
colouring.

To show that Gk+1 cannot be coloured with k colours, we argue by con-
tradiction. Suppose there is a colouring with k colours. This colouring is
also a k-colouring of Gk. As seen earlier in problem set 1, for every colour j
there must exist a vertex vj of colour j whose neighbours have every colour
except j. Now uj has the same neighbours as vj, so uj must also have colour
j. So the set u1, . . . un contains vertices of every colour. But w is adjacent
to every vertex ui, which leads to a contradiction.
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