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For interval graphs, we obtained a perfect colouring using a very special
type of ordering, with the property that all uncoloured neighbours form a
clique. This idea carries over to other classes of graphs.

For a graph G = (V,E), a perfect elimination ordering of G is an ordering
v1, v2, . . . , vn so that, for each vertex vi, N(vi) ∩ {v1, . . . , vi−1} is a clique.

Theorem 1. If a graph G has a perfect elimination ordering then G is
perfect.

Proof. If G = (V,E) has a perfect elimination ordering, v1, v2, . . . , vn, then
this ordering has the property that, for each vertex vi, N(vi)∩{v1, . . . , vi−1}
has size at most ω(G)− 1. Thus, the greedy colouring uses at ω(G) colours,
and χ(G) = ω(G). To complete the proof, note that if G has a perfect
elimination ordering, then so does each induced subgraph of G.

A subgraph of a graph G = (V,E) is a graph H = (VH , EH) so that VH ⊆ VG
and EH ⊆ EG. A subgraphH is an induced subgraph if every edge in EG with
endpoints in VH is included in EH . A subgraph H is a spanning subgraph if
VH = VG. An induced cycle is an induced subgraph which is a cycle. This
means that the cycle has no chords, i.e. no other edges than the cycle edges
connecting the vertices of the cycle. A graph G = (V,E) is chordal if it has
no induced cycles of size larger than 3.

By definition, interval graphs are perfect, but the converse is not true.

Theorem 2. A graph G is chordal if and only if it has a perfect elimination
ordering.

Before we give the proof of this theorem we need a few lemmas.

Theorem 3. Every connected graph contains at least two vertices which are
not cut vertices.

These vertices can be found by taking a maximal path in a graph, and
taking its endpoints.

Lemma 4. Every graph chordal graph G has a vertex such that its neigh-
bourhood is a clique.
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Proof. Assume without loss of generality that G is connected. (If not, take
a connected component). Let v be a vertex which is not a cut vertex. We
will argue that the neighbours of v form a clique. Assume the contrary. This
means that there exist two neighbours u,w of v which are not adjacent. Since
v is not a cut vertex, G− v is connected, so there exists a path from u to w
in G − v. Let P be a shortest such path. Then by extending P with v we
find an induced cycle of size larger than 3. Thus, G is not chordal.

Proof of Theorem 2. Assume first that G is chordal. Then so is each induced
subgraph of G. By the lemma, G contains a vertex vn whose neighbourhood
is a clique. Put this vertex last in the ordering. Then find a vertex vn−1 in
G− vn whose neighbourhood in G− vn is a clique. Continuing this process,
this results in a perfect elimination ordering v1, . . . , vn−1, vn.

Next, assume G is not chordal. Then G must have an induced cycle C
of size k > 3. Now consider any ordering of the vertices of G. Let v be
the vertex of C that comes last in the ordering. This means that the two
neighbours u and w on C of v come before v in the ordering. However, since
C is induced, u and w are not connected. Thus the ordering is not a perfect
elimination ordering.

We can extend the idea of a perfect elimination ordering to obtain bounds
on the ration χ/ω. Suppose a graph G = (V,E) has an ordering v1, v2, . . . , vn
so that, for each vertex vi, N(vi) ∩ {v1, . . . , vi−1} can be partitioned into
at most k cliques. Then v has at most kω − 1) neighbours in N(vi) ∩
{v1, . . . , vi−1}, and thus the greedy colouring using this ordering will use
at most kω colours. This implies that χ(G) ≤ kω(G).

A graph G = (V,E) is a geometric graph if the vertices can be embedded in
2 so that two vertices are adjacent if and only if they have distance at most
t from each other, where t is a given threshold value. Geometric graphs are
also called unit disk graphs.

Theorem 5. If G is a geometric graph, then χ(G) ≤ 3ω(G).

Proof. Note first that all neighbours of a vertex of G lie inside a circle with
radius t. Order all vertices from left to right, i.e. according to increasing
x-coordinate. (If two vertices have the same x-coordinate, then give prefer-
ence to the smallest y coordinate.) Then for each vertex v with coordinates
(xv, yv), the vertices coming before v in the ordering lie in the half circle with
radius t around v, which lies to the left of the vertical line through (xv, yv).
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This half-circle can be partioned into three equal regions, each of which has
diameter t. Thus all vertices in one of these regions form a clique. Thus the
neighbours of v that come before it in the ordering can be partioned into 3
cliques.

A graph G is k-critical if each proper induced subgraph H of G (i.e. every
induced subgraph except G itself) has χ(H) < χ(G). Every k-chromatic
graphs has a k-critical subgraph. In every k-chromatic graph, every vertex
has degree at least k − 1.

Theorem 6. In a k-critical graph (k ≥ 2), no vertex cut is a clique.

Proof. Suppose, by contradiction, that G is k-critical, has a vertex cut C
that is a clique. Let H1, . . . , H` be the components of G − C, and, for each
i, let Gi be the graph formed from Hi by adding C and all edges between
vertices in C and Hi. Each Gi is a proper subgraph, and can therefore be
coloured with k − 1 colours. In such a colouring, each vertex in C must
receive a different colour. Wlog, we can adjust the colourings of the Gi so
that the colour of each vertex in C is the same in the colouring of each Gi.
But since the Gi only overlap in C, this leads to a colouring of G.

A corollary of this theorem is that no k-critical graph can have a cut
vertex.

The concept of critical graphs is used in the proof of Brook’s theorem.
First, note that the only 1-critical graph is K1, and the only 2-critical graph
is K2. The only 3-critical graphs are odd cycles (problem set 3).

Theorem 7 (Brook’s theorem). . If G is a connected, simple graph which
is neither an odd cycle or a clique, then χ(G) ≤ ∆(G).

Proof. Let G be a k-chromatic graph that satisfies the hypothesis of the
theorem. By the statements above, this implies that k ≥ 4. We may assume
wlog that G is k-critical.

Case 1 : G has a vertex cut of size 2, say {u, v}. Since G is k-critical,
by Theorem 3, u and v are not adjacent. Moreover, if G1, . . . , G` are defined
as in the proof of Theorem 3, then there must be two of the Gi, say G1 and
G2, so that every k − 1-colouring of G1 assigns u and v different colours,
while any k− 1-colouring of G2 assigns u and v the same colour. This mean
that, in G1, any colour on a neighbour of u is assumed by a neighbour of v.
Therefore, u and v together have at least k − 1 neighbours in G1. On the
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other hand, u and v each must see all colours except one in G2, so u and v
together have at least 2(k−2) neighbours in G2. Therefore, u and v together
must have at least 3k − 5 ≥ 2k − 1 neighbours in G, which means that at
least one of u, v must have degree k, so ∆(G) ≥ k, as required.

Case 2: G does not have a vertex cut of size 2 (G is 3-connected). Since
G is not a clique, there must be three vertices u, v, w so that u, v and v, w
are adjacent, but u,w are not. Set u = v1 and w = v2. Order the vertices
in G− {u,w} according to non-increasing graph distance from v, so if i < j
then dist(vi, v) ≥ dist(vj, v). Note that this implies that vn = v (n = n(G))
, and for each i ≥ 4, vi has at least one neighbour vj with j > i. Now colour
the vertices with the greedy colouring algorithm using this ordering. Then
v1 and v2 will both receive colour 1. All vertices v3, . . . , vn−1 have at least
one uncoloured neighbour, and thus at most ∆ − 1 coloured neighbours, so
these can be coloured with ∆ colours. Now vn = v has two neighbours v1
and v2, with the same colour, so vn is adjacent to at most ∆− 1 colours, and
the colouring can be completed with ∆ colours. Thus, k ≤ ∆
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