Topics in Graph Theory - 2

January 14 and 16, 2014
For interval graphs, we obtained a perfect colouring using a very special type of ordering, with the property that all uncoloured neighbours form a clique. This idea carries over to other classes of graphs.
For a graph $G=(V, E)$, a perfect elimination ordering of G is an ordering $v_{1}, v_{2}, \ldots, v_{n}$ so that, for each vertex $v_{i}, N\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$ is a clique.

Theorem 1. If a graph G has a perfect elimination ordering then G is perfect.

Proof. If $G=(V, E)$ has a perfect elimination ordering, $v_{1}, v_{2}, \ldots, v_{n}$, then this ordering has the property that, for each vertex $v_{i}, N\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$ has size at most $\omega(G)-1$. Thus, the greedy colouring uses at $\omega(G)$ colours, and $\chi(G)=\omega(G)$. To complete the proof, note that if G has a perfect elimination ordering, then so does each induced subgraph of G.

A subgraph of a graph $G=(V, E)$ is a graph $H=\left(V_{H}, E_{H}\right)$ so that $V_{H} \subseteq V_{G}$ and $E_{H} \subseteq E_{G}$. A subgraph H is an induced subgraph if every edge in E_{G} with endpoints in V_{H} is included in E_{H}. A subgraph H is a spanning subgraph if $V_{H}=V_{G}$. An induced cycle is an induced subgraph which is a cycle. This means that the cycle has no chords, i.e. no other edges than the cycle edges connecting the vertices of the cycle. A graph $G=(V, E)$ is chordal if it has no induced cycles of size larger than 3 .

By definition, interval graphs are perfect, but the converse is not true.
Theorem 2. A graph G is chordal if and only if it has a perfect elimination ordering.

Before we give the proof of this theorem we need a few lemmas.
Theorem 3. Every connected graph contains at least two vertices which are not cut vertices.

These vertices can be found by taking a maximal path in a graph, and taking its endpoints.

Lemma 4. Every graph chordal graph G has a vertex such that its neighbourhood is a clique.

Proof. Assume without loss of generality that G is connected. (If not, take a connected component). Let v be a vertex which is not a cut vertex. We will argue that the neighbours of v form a clique. Assume the contrary. This means that there exist two neighbours u, w of v which are not adjacent. Since v is not a cut vertex, $G-v$ is connected, so there exists a path from u to w in $G-v$. Let P be a shortest such path. Then by extending P with v we find an induced cycle of size larger than 3 . Thus, G is not chordal.

Proof of Theorem 2. Assume first that G is chordal. Then so is each induced subgraph of G. By the lemma, G contains a vertex v_{n} whose neighbourhood is a clique. Put this vertex last in the ordering. Then find a vertex v_{n-1} in $G-v_{n}$ whose neighbourhood in $G-v_{n}$ is a clique. Continuing this process, this results in a perfect elimination ordering $v_{1}, \ldots, v_{n-1}, v_{n}$.

Next, assume G is not chordal. Then G must have an induced cycle C of size $k>3$. Now consider any ordering of the vertices of G. Let v be the vertex of C that comes last in the ordering. This means that the two neighbours u and w on C of v come before v in the ordering. However, since C is induced, u and w are not connected. Thus the ordering is not a perfect elimination ordering.

We can extend the idea of a perfect elimination ordering to obtain bounds on the ration χ / ω. Suppose a graph $G=(V, E)$ has an ordering $v_{1}, v_{2}, \ldots, v_{n}$ so that, for each vertex $v_{i}, N\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$ can be partitioned into at most k cliques. Then v has at most $k \omega-1$) neighbours in $N\left(v_{i}\right) \cap$ $\left\{v_{1}, \ldots, v_{i-1}\right\}$, and thus the greedy colouring using this ordering will use at most $k \omega$ colours. This implies that $\chi(G) \leq k \omega(G)$.
A graph $G=(V, E)$ is a geometric graph if the vertices can be embedded in ${ }^{2}$ so that two vertices are adjacent if and only if they have distance at most t from each other, where t is a given threshold value. Geometric graphs are also called unit disk graphs.

Theorem 5. If G is a geometric graph, then $\chi(G) \leq 3 \omega(G)$.
Proof. Note first that all neighbours of a vertex of G lie inside a circle with radius t. Order all vertices from left to right, i.e. according to increasing x-coordinate. (If two vertices have the same x-coordinate, then give preference to the smallest y coordinate.) Then for each vertex v with coordinates $\left(x_{v}, y_{v}\right)$, the vertices coming before v in the ordering lie in the half circle with radius t around v, which lies to the left of the vertical line through $\left(x_{v}, y_{v}\right)$.

This half-circle can be partioned into three equal regions, each of which has diameter t. Thus all vertices in one of these regions form a clique. Thus the neighbours of v that come before it in the ordering can be partioned into 3 cliques.

A graph G is k-critical if each proper induced subgraph H of G (i.e. every induced subgraph except G itself) has $\chi(H)<\chi(G)$. Every k-chromatic graphs has a k-critical subgraph. In every k-chromatic graph, every vertex has degree at least $k-1$.

Theorem 6. In a k-critical graph ($k \geq 2$), no vertex cut is a clique.
Proof. Suppose, by contradiction, that G is k-critical, has a vertex cut C that is a clique. Let H_{1}, \ldots, H_{ℓ} be the components of $G-C$, and, for each i, let G_{i} be the graph formed from H_{i} by adding C and all edges between vertices in C and H_{i}. Each G_{i} is a proper subgraph, and can therefore be coloured with $k-1$ colours. In such a colouring, each vertex in C must receive a different colour. Wlog, we can adjust the colourings of the G_{i} so that the colour of each vertex in C is the same in the colouring of each G_{i}. But since the G_{i} only overlap in C, this leads to a colouring of G.

A corollary of this theorem is that no k-critical graph can have a cut vertex.

The concept of critical graphs is used in the proof of Brook's theorem. First, note that the only 1-critical graph is K_{1}, and the only 2 -critical graph is K_{2}. The only 3 -critical graphs are odd cycles (problem set 3).

Theorem 7 (Brook's theorem). . If G is a connected, simple graph which is neither an odd cycle or a clique, then $\chi(G) \leq \Delta(G)$.

Proof. Let G be a k-chromatic graph that satisfies the hypothesis of the theorem. By the statements above, this implies that $k \geq 4$. We may assume wlog that G is k-critical.

Case 1: G has a vertex cut of size 2 , say $\{u, v\}$. Since G is k-critical, by Theorem 3, u and v are not adjacent. Moreover, if G_{1}, \ldots, G_{ℓ} are defined as in the proof of Theorem 3, then there must be two of the G_{i}, say G_{1} and G_{2}, so that every $k-1$-colouring of G_{1} assigns u and v different colours, while any $k-1$-colouring of G_{2} assigns u and v the same colour. This mean that, in G_{1}, any colour on a neighbour of u is assumed by a neighbour of v. Therefore, u and v together have at least $k-1$ neighbours in G_{1}. On the
other hand, u and v each must see all colours except one in G_{2}, so u and v together have at least $2(k-2)$ neighbours in G_{2}. Therefore, u and v together must have at least $3 k-5 \geq 2 k-1$ neighbours in G, which means that at least one of u, v must have degree k, so $\Delta(G) \geq k$, as required.

Case 2: G does not have a vertex cut of size 2 (G is 3 -connected). Since G is not a clique, there must be three vertices u, v, w so that u, v and v, w are adjacent, but u, w are not. Set $u=v_{1}$ and $w=v_{2}$. Order the vertices in $G-\{u, w\}$ according to non-increasing graph distance from v, so if $i<j$ then $\operatorname{dist}\left(v_{i}, v\right) \geq \operatorname{dist}\left(v_{j}, v\right)$. Note that this implies that $v_{n}=v(n=n(G))$, and for each $i \geq 4, v_{i}$ has at least one neighbour v_{j} with $j>i$. Now colour the vertices with the greedy colouring algorithm using this ordering. Then v_{1} and v_{2} will both receive colour 1 . All vertices v_{3}, \ldots, v_{n-1} have at least one uncoloured neighbour, and thus at most $\Delta-1$ coloured neighbours, so these can be coloured with Δ colours. Now $v_{n}=v$ has two neighbours v_{1} and v_{2}, with the same colour, so v_{n} is adjacent to at most $\Delta-1$ colours, and the colouring can be completed with Δ colours. Thus, $k \leq \Delta$

