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In many applications, it is necessary to assign more than one colour to a
vertex or edge. We can extend the idea of colouring: given a graph G and
a demand s(v) for each vertex v, a multicolouring of (G, s) is a assignment
of a set of s(v) distinct colours to each vertex v, so that the colour sets
on adjacent vertices are disjoint. We will refer to the minimum number of
colours needed as χ(G, s).

The problem of multicolouring can be turned into a regular vertex colour-
ing of a related graph. Given a graph G and demands s(v), replace every
vertex v of G by a clique of size s(v). Replace every edge uv in G with edges
from every vertex in the clique replacing u to the clique replacing v.

Clearly, a lower bound on the number of colours needed for a multicolour-
ing of graph G with demand vector s is given by the weighted clique number
χ(G, s), which is the maximum, over all cliques C of G, of the sum of the
demands on all the vertices of C. So

χ(G, s) = max
C clique

∑
v∈C

s(v).

Since every colour can still only be used at most α(G) times, we have
that

χ(G, s) ≥
∑
v∈V

s(v)/α(G).

We will refer to the righthandside as the weighted clique number ω(G, s).
An edge multicolouring is defined in an analogous way, and the minimum

number of colours needed to colour the edges of a graph G with edge weight
vector s is referred to as χ′(G, s). A lower bound for the number of colours
needed is then given by the weighted degree: the maximum, over all vertices
v, of the demands on all edges incident with v. Here, a multicolouring of
a graph G with edge demands s(e) can be interpreted as an edge colouring
of a graph where each edge e of G is replaced by s(e) parallel edges. Since
the König-Egervary theorem applies equally to graphs with parallel edges,
we have that for any bipartite graph G, and any edge demand vector s,

χ′(G, s) = ∆(G, s).

Perfect graphs also behave perfectly with respect to weighted colourings.
This beautiful result is due to Lovász, who proved this in 1972 at age 22. We
will call a colouring of G, s) with ω(G, s) colours a perfect colouring.
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Theorem 1. If G is perfect, then for any vector of non-negative integer
demands s, (G, s) has a perfect colouring.

Proof. Let G = (V,E) be a perfect graph, and s a non-negative integer
demand vector.

First, note that the case where s(v) ≤ 1 is dealt with by the property
that G is perfect: let H be the subgraph induced by all vertices with weight
1. Then ω(G, s) = ω(H) and any colouring of H is a colouring of (G, s).

The remainder of the proof is by induction on
∑

v∈V s(v), where the base
case is given by the previous paragraph.

For the induction step, fix s, and let v be a vertex so that s(v) ≥ 2.
Consider the weight vector s′ where s′(v) = s(v)− 1, and s′(u) = s(u) for all
other vertices. Since the sum of the weights given by s′ is smaller than that
given by s, by the induction hypothesis, (G, s′) has a perfect colouring. Let
k = ω(G, s). We distinguish two cases:

ω(G, s′) = k − 1, then we can assign to v a colour not occurring in the
colouring of (G, s′) to obtain a colouring of (G, s) that uses (k − 1) + 1 =
ω(G, s) colours.

Assume then that ω(G, s) = ω(G, s′). Note that this implies that v does
not belong to any maximum clique in (G, s′). In other words, the weight
of any clique containing v in (G, s′) is at most k − 1. By induction, (G, s′)
has a perfect colouring, which uses k colours. At least one of the colours
classes includes v. Let this colour class be A. Now consider the demand
vector s′A, given as follows: s′A(u) = s′(u) − 1 if u ∈ A, and s′A(u) = s′(u)
otherwise. The remaining colours give a colouring of (G, s′A) using k − 1
colours, so ω(G, s′A) = k − 1. Moreover, since v ∈ A, the weight of each
clique containing v in s′A is at most k−2. Now consider the vector sA, where
sA(v) = s′A(v) + 1, and sA(u) = s′A(u) for all other vertices. Since v was not
contained in any maximum weight clique, we have that ω(G, sA) = k − 1.
By induction, (G, sA) can be coloured using k− 1 colours. Finally, note that
sA(u) = s(u) − 1 if u ∈ A, and sA(u) = s(u) otherwise. Therefore, if we
add a new colour and assign it to the vertices of A, we obtain a colouring of
(G, s) using k colours.

Note that in a perfect colouring, every colour class must intersect every
maximum clique. By an inductive argument, we can show the converse,
resulting in the following theorem.
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Theorem 2. A graph G is perfect if every induced subgraph H has the prop-
erty that H has an independent set which intersects every maximum clique.

The complement Ḡ of a graph G = (V,E) is the graph with vertex set V
where two vertices u, v are adjacent in the complement precisely when they
are not adjacent in G.

Lovász proved the theorem above as a lemma to prove the following the-
orem, conjectured by Berge.

Theorem 3. A graph is perfect if and only if its complement is perfect.

Proof. Note that the cliques in Ḡ are the independent sets of G, and vice
versa. By Theorem 2, it suffices to show that every induced subgraph H
of G has the property that H has a clique which intersects every maximum
independent set.

Assume by contradiction that there is an induced subgraph H which does
not have the property. Thus, for every clique of H there is an independent
set which does not intersect it. Note that it is sufficient to consider only
maximal cliques. Let C1, . . . , CK be the collection of all maximal cliques of
H, and for each i, let Ai be a maximum independent set which does not
intersect Ci. Now form a demand vector s as follows. For each v ∈ V (H),

s(v) = |{i : v ∈ Ai}|

In other words, the demand of vertex v equals the number of sets Ai that it
belongs to.

Now (H, s) has a colouring with K colours: give each Ai a different colour.
Thus, χ(H,w) ≤ K. In fact, we have equality. Namely, since every set Ai is
a maximum independent set, its size equals α(H) = α, so∑

v

s(v) =
∑
v

|{i : v ∈ Ai}| =
∑
i

|Ai| = Kα.

Thus, χ(H, s) ≥ (Kα)/α = K, so the colouring given is best possible.
Note that any maximum demand clique in (H, s) must be a maximal

clique in G, and thus be one of the Ci. For any i,∑
v∈Ci

s(v) =
∑
v∈Ci

|{i : v ∈ Ai}| =
∑
j

|Ci ∩ Aj|.
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Since an independent set can intersect a clique in at most one vertex,
we have that |Ci ∩ Aj| ≤ 1 for all j. Moreover, we know by definition that
|Ci ∩ Ai| = 0. Thus, ∑

v∈Ci

s(v) ≤ K − 1

for all i, and thus ω(G,w) ≤ K − 1. This contradicts Theorem 1.
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