Topics in Graph Theory - 4

January 23 and 28, 2013
In many applications, it is necessary to assign more than one colour to a vertex or edge. We can extend the idea of colouring: given a graph G and a demand $s(v)$ for each vertex v, a multicolouring of (G, s) is a assignment of a set of $s(v)$ distinct colours to each vertex v, so that the colour sets on adjacent vertices are disjoint. We will refer to the minimum number of colours needed as $\chi(G, s)$.

The problem of multicolouring can be turned into a regular vertex colouring of a related graph. Given a graph G and demands $s(v)$, replace every vertex v of G by a clique of size $s(v)$. Replace every edge $u v$ in G with edges from every vertex in the clique replacing u to the clique replacing v.

Clearly, a lower bound on the number of colours needed for a multicolouring of graph G with demand vector s is given by the weighted clique number $\chi(G, s)$, which is the maximum, over all cliques C of G, of the sum of the demands on all the vertices of C. So

$$
\chi(G, s)=\max _{C \text { clique }} \sum_{v \in C} s(v) .
$$

Since every colour can still only be used at most $\alpha(G)$ times, we have that

$$
\chi(G, s) \geq \sum_{v \in V} s(v) / \alpha(G)
$$

We will refer to the righthandside as the weighted clique number $\omega(G, s)$.
An edge multicolouring is defined in an analogous way, and the minimum number of colours needed to colour the edges of a graph G with edge weight vector s is referred to as $\chi^{\prime}(G, s)$. A lower bound for the number of colours needed is then given by the weighted degree: the maximum, over all vertices v, of the demands on all edges incident with v. Here, a multicolouring of a graph G with edge demands $s(e)$ can be interpreted as an edge colouring of a graph where each edge e of G is replaced by $s(e)$ parallel edges. Since the König-Egervary theorem applies equally to graphs with parallel edges, we have that for any bipartite graph G, and any edge demand vector s,

$$
\chi^{\prime}(G, s)=\Delta(G, s)
$$

Perfect graphs also behave perfectly with respect to weighted colourings. This beautiful result is due to Lovász, who proved this in 1972 at age 22. We will call a colouring of $G, s)$ with $\omega(G, s)$ colours a perfect colouring.

Theorem 1. If G is perfect, then for any vector of non-negative integer demands $s,(G, s)$ has a perfect colouring.

Proof. Let $G=(V, E)$ be a perfect graph, and s a non-negative integer demand vector.

First, note that the case where $s(v) \leq 1$ is dealt with by the property that G is perfect: let H be the subgraph induced by all vertices with weight 1. Then $\omega(G, s)=\omega(H)$ and any colouring of H is a colouring of (G, s).

The remainder of the proof is by induction on $\sum_{v \in V} s(v)$, where the base case is given by the previous paragraph.

For the induction step, fix s, and let v be a vertex so that $s(v) \geq 2$. Consider the weight vector s^{\prime} where $s^{\prime}(v)=s(v)-1$, and $s^{\prime}(u)=s(u)$ for all other vertices. Since the sum of the weights given by s^{\prime} is smaller than that given by s, by the induction hypothesis, $\left(G, s^{\prime}\right)$ has a perfect colouring. Let $k=\omega(G, s)$. We distinguish two cases:
$\omega\left(G, s^{\prime}\right)=k-1$, then we can assign to v a colour not occurring in the colouring of $\left(G, s^{\prime}\right)$ to obtain a colouring of (G, s) that uses $(k-1)+1=$ $\omega(G, s)$ colours.

Assume then that $\omega(G, s)=\omega\left(G, s^{\prime}\right)$. Note that this implies that v does not belong to any maximum clique in $\left(G, s^{\prime}\right)$. In other words, the weight of any clique containing v in $\left(G, s^{\prime}\right)$ is at most $k-1$. By induction, (G, s^{\prime}) has a perfect colouring, which uses k colours. At least one of the colours classes includes v. Let this colour class be A. Now consider the demand vector s_{A}^{\prime}, given as follows: $s_{A}^{\prime}(u)=s^{\prime}(u)-1$ if $u \in A$, and $s_{A}^{\prime}(u)=s^{\prime}(u)$ otherwise. The remaining colours give a colouring of $\left(G, s_{A}^{\prime}\right)$ using $k-1$ colours, so $\omega\left(G, s_{A}^{\prime}\right)=k-1$. Moreover, since $v \in A$, the weight of each clique containing v in s_{A}^{\prime} is at most $k-2$. Now consider the vector s_{A}, where $s_{A}(v)=s_{A}^{\prime}(v)+1$, and $s_{A}(u)=s_{A}^{\prime}(u)$ for all other vertices. Since v was not contained in any maximum weight clique, we have that $\omega\left(G, s_{A}\right)=k-1$. By induction, $\left(G, s_{A}\right)$ can be coloured using $k-1$ colours. Finally, note that $s_{A}(u)=s(u)-1$ if $u \in A$, and $s_{A}(u)=s(u)$ otherwise. Therefore, if we add a new colour and assign it to the vertices of A, we obtain a colouring of (G, s) using k colours.

Note that in a perfect colouring, every colour class must intersect every maximum clique. By an inductive argument, we can show the converse, resulting in the following theorem.

Theorem 2. A graph G is perfect if every induced subgraph H has the property that H has an independent set which intersects every maximum clique.

The complement \bar{G} of a graph $G=(V, E)$ is the graph with vertex set V where two vertices u, v are adjacent in the complement precisely when they are not adjacent in G.

Lovász proved the theorem above as a lemma to prove the following theorem, conjectured by Berge.

Theorem 3. A graph is perfect if and only if its complement is perfect.
Proof. Note that the cliques in \bar{G} are the independent sets of G, and vice versa. By Theorem 2, it suffices to show that every induced subgraph H of G has the property that H has a clique which intersects every maximum independent set.

Assume by contradiction that there is an induced subgraph H which does not have the property. Thus, for every clique of H there is an independent set which does not intersect it. Note that it is sufficient to consider only maximal cliques. Let C_{1}, \ldots, C_{K} be the collection of all maximal cliques of H, and for each i, let A_{i} be a maximum independent set which does not intersect C_{i}. Now form a demand vector s as follows. For each $v \in V(H)$,

$$
s(v)=\left|\left\{i: v \in A_{i}\right\}\right|
$$

In other words, the demand of vertex v equals the number of sets A_{i} that it belongs to.

Now (H, s) has a colouring with K colours: give each A_{i} a different colour. Thus, $\chi(H, w) \leq K$. In fact, we have equality. Namely, since every set A_{i} is a maximum independent set, its size equals $\alpha(H)=\alpha$, so

$$
\sum_{v} s(v)=\sum_{v}\left|\left\{i: v \in A_{i}\right\}\right|=\sum_{i}\left|A_{i}\right|=K \alpha
$$

Thus, $\chi(H, s) \geq(K \alpha) / \alpha=K$, so the colouring given is best possible.
Note that any maximum demand clique in (H, s) must be a maximal clique in G, and thus be one of the C_{i}. For any i,

$$
\sum_{v \in C_{i}} s(v)=\sum_{v \in C_{i}}\left|\left\{i: v \in A_{i}\right\}\right|=\sum_{j}\left|C_{i} \cap A_{j}\right|
$$

Since an independent set can intersect a clique in at most one vertex, we have that $\left|C_{i} \cap A_{j}\right| \leq 1$ for all j. Moreover, we know by definition that $\left|C_{i} \cap A_{i}\right|=0$. Thus,

$$
\sum_{v \in C_{i}} s(v) \leq K-1
$$

for all i, and thus $\omega(G, w) \leq K-1$. This contradicts Theorem 1 .

