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List colourings

A common requirement in real-life applications of graph colouring is that
the “colours” available are limited by external considerations. This concept
gives rise to the concept of list colouring.

Given a graph G = (V,E) and a colour set A, a list assignment is a
function L : V → P(A). The set L(v) is called the list at vertex v, and
represents the set of possible colours at v. A list colouring for a given graph
G and list assignment L is a proper colouring f of G such that, for all v ∈ V ,
f(v) ∈ L(v). A graph G is k-choosable or k-list colourable if, for every list
assignment such that, for all v ∈ V , |L(v)| = k, there exists a list colouring
of (G,L). The list chromatic number χ`(G) of G is the least k so that G is
k-choosable.

One possible list assignment is to give each vertex the same list. In
this case, the problem reverts to the regular colouring problem, and a list
colouring exists precisely when the graph has chromatic number at least as
large as the size of the common list. Thus, for every graph G, χ`(G) ≥ χ(G).
We will see in a presentation in class that there exist bipartite graphs with
arbitrary large list chromatic number, so the gap between χ`(G) and χG can
be arbitrarily large.

Given a list assignment, we can also employ the greedy colouring al-
gorithm to find a list colouring. As before, vertices are coloured in pre-
determined order. At each vertex v, a colour in L(v) is chosen which does
not appear on any of the coloured neighbours. Clearly, if L(v) is of larger
size than the number of coloured neighbours, such a colour exists. There-
fore, if we have a greedy ordering v1, v2, . . . , vn such that, for every vertex
vi, |N(vi) ∩ {v1, v2, . . . , vi−1}| ≤ k, then the graph is (k + 1)-choosable. For
example, for the graph in assignment 1 formed by intersecting lines in the
plane, the vertices could be ordered so that each vertex has at most two
coloured neighbours. Thus the list-chromatic number is at most 3. Similarly,
if we have a perfect elimination ordering, then each vertex has at most ω− 1
coloured neighbours, so χ`(G) = χ(G) = ω(G).

We have seen that there are many connections between colourings and
orientations. Here is one more. First we need some definition. Given an
orientation of a graph, the out-degree of a vertex v, notation deg+(v), is the
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number of edges that have v as their tail. A kernel is an independent set A
in G so that each vertex v ∈ V (G) is either in a, or is the tail of an edge
with head in A.

Theorem 1. Let G = (V,E) be a graph. If G has an orientation such that
every induced subgraph has a kernel, and L : V → C is a list assignment
for V so that, for all v ∈ V , |L(v)| ≥ deg+(v) + 1, then there exists a list
colouring of (G,L).

Proof. The proof is by induction on the total number of edges of G. If G
has no edges, then G satisfies the condition trivially, and each vertex has
out-degree 0. So for any assignment of lists of size at least 1, a list-colouring
can be found. Fix a colour c ∈ C, and let Gc be the subgraph by all vertices
whose list contains colour c. By assumption, Gc has a kernel, say A. Assign
colour c to all vertices of A.

Now consider H = G−A, and let LH be a list assignment for H obtained
by removing colour v: LH(v) = L(v) − {c} for all v ∈ V − A. Now for
each v of Gc − A, we have that deg+

H(v) = deg+(v) − 1, where deg+
H(V ) is

the out-degree of v in H. On the other hand, |LH(v)| = |L(v)| − 1. So
|LH(v)| ≥ deg+

H(v) + 1. For vertices in H which are not in Gc, so whose list
does not contain v, deg+

H(v) ≤ deg+(v) ≤ |LH(v)| − 1.
Thus H satisfies the conditions, so by induction there exists a list colour-

ing of (H,LH). Adding the vertices in A, coloured with colour c, makes this
into a list colouring for (G,L).

The concept of list colouring can be equally applied to edge colourings.
Thus, χ′`(G) is the list chromatic index of G, and is the minimum number
k such that, for any assignment of lists of size k to the edges of G, a list
colouring can always be found.

In general, edge colourings are ”nicer” than vertex colourings. For ex-
ample, we have the theorem that, for all bipartite graphs G, χ′(G) = ∆(G).
In fact, for simple graphs G, we have that χ′(G) ≤ ∆ + 1. (Proof of this
theorem skipped in this class, but worth looking up!) This led Vizing to the
following conjecture.

[Vizing] For all graphs G, χ′`(G) = χ′(G).
The conjecture was proved for bipartite graphs. For bipartite graphs,

the line graph has an obvious representation. Each edge xi, yj in a graph
with bipartition X, Y can be represented as a subsquare in an |X| × |Y |
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square, where each row corresponds to an element of X, and each column
to an element of Y . Subsquares are connected iff they are in the same row
and column. It turns out that, for a specific orientation of the line graph, a
kernel can be found using the concept of stable matchings.

Given sets X = {x1, x2, . . . , x3} and Y = {y1.y2, . . . , yn}, as well as a
ranking of the elements of Y for each element of X, and a ranking of the
elements of X for each element of Y , a stable matching is a subset M of
X × Y such that each element of X and each element of Y occurs exactly
once in M (so M is a perfect matching), and, for every pair (x, y) not in M ,
the following holds. Let x′ be the unique element of X matched to y, and
y′ the unique element of Y matched to x. (So (x, y′) and (x′, y) are in M).
Then x prefers y′ to y or y prefers x′ to x.

Gale and Shapley showed that a stable matching always exists, no matter
how the rankings are, and they gave an algorithm to find such a matching.

Lemma 2. If G is a bipartite graph with maximum degree ∆, then L(G) has
an orientation with the property that each subgraph of L(G) has a kernel, and
each vertex of L(G) has out-degree at most ∆− 1.

Proof. Assume wlog that |X| = |Y | = n. (If not, add isolated vertices.) Let
k = ∆(G). Let f : X×Y → [k] be a vertex colouring of L(G) with k colours.
By König’s theorem, such a colouring exists. Now orient the edges of L(G) as
follows. Horizontally, orient edges from larger colours to smaller colours. So
if c(x, y) > c(x, y′) then the edge is oriented from (x, y) to (x, y′). Vertically,
orient edges from smaller colours to larger colours, so if c(x, y) > c(x′, y) then
the edge is oriented from (x′, y) to (x, y).

Note that each vertex (x, y) has out-degree at most k − 1. Namely, Let
c(x, y) = i. Then any horizontal edge from (x, y) to a vertex (x, y′) must go
to a vertex of colour in {1, 2, . . . , i− 1}, while any vertical edge must go to a
vertex (x′, y) of colour in {i+ 1, . . . , k}. Since each colour can occur at most
once in any row or column, this implies that any vertex has out-degree at
most k − 1.

Now consider any induced subgraph H of L(G). Form the following
preference lists. Each vertex x ranks the vertices in Y as follows. First,
elements y ∈ Y so that (x, y) is in H are ranked, in increasing order of the
colour of the pair (x, y). Then, the other elements of Y are ranked in any
arbitrary order, but all being of less preference than the first set. Each vertex
y ranks the vertices in X as follows. First, elements x ∈ X so that (x, y) is in
H are ranked in decreasing order of the colour of the pair (x, y). Then, the
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other elements of X are ranked in any arbitrary order, but of less preference
than the first set.

Let M be a stable matching for these preference rankings. We claim that
the set A consisting of all pairs (x, y) in M that correspond to vertices in H
forms a kernel in H with the given orientation. Let (x, y) be a pair occurring
in H which is not in A. Let x′ ∈ X and y′ ∈ Y be so that (x, y′) and (x′, y)
are in M (such elements must exist). By the definition of a stable matching,
x prefers y′ to y or y prefers x′ to x. If x prefers y′ to y, then the pair (x, y′)
must be in H, and c(x, y′) < c(x, y). Therefore, (x, y′) ∈ A (by definition of
the ranking) and there is an edge directed from (x, y) to (x, y′). If y prefers
x′ to x, then the pair (x′, y) must be in H, and c(x, y) < c(x′, y). Therefore,
(x′, y) ∈ A and there is an edge directed from (x, y) to (x′, y). Therefore,
(x, y) is the tail of at least one edge with head in A. Thus, A is a kernel.

The proof of the following theorem now follows from the previous lemma
and theorem.

Theorem 3 (Galvin, ’94). For all bipartite graphs G, χ′`(G) = χ′(G).
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