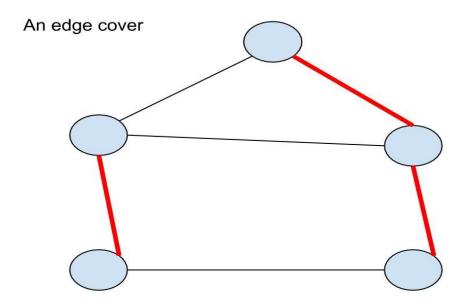
Topic in Graph Theory

Cuong Nguyen

Thursday Jan 30

Preliminaries

Given graph G = (V, E) $\alpha'(G)$: matching number or the size of the maximum matching. An edge cover of G is a subset of E which covers all vertices in V. Denote $\beta'(G)$ as the size of the minimum edge cover.



3.1.22 Theorem Gallai [1959]

G: graph without isolated vertex (vertex with degree 0), then $\alpha'(G) + \beta'(G) = n(G)$.

The requirement for no isolated vertex is trivial because how do we have an edge cover if exists an isolated vertex?

Proof

Strategy: 1) Prove $\alpha'(G) + \beta'(G) \leq n(G)$

Given a maximum matching, we construct an edge cover with size $n(G) - \alpha'(G)$.

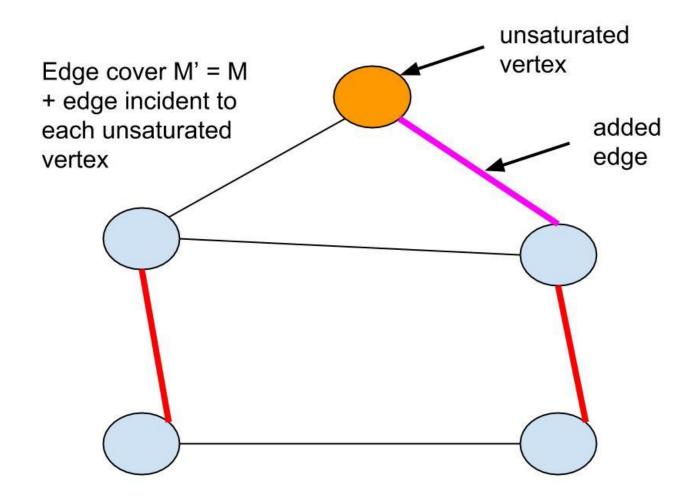
2) Prove $\alpha'(G) + \beta'(G) \ge n(G)$

Given a minimum edge cover, we construct a matching with size $n(G) - \beta'(G)$.

1) Prove
$$\alpha'(G) + \beta'(G) \le n(G)$$

Let M be the maximum matching set

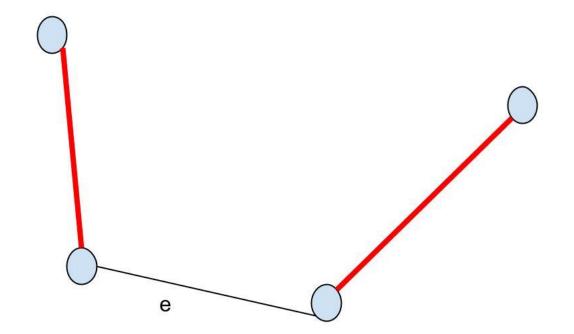




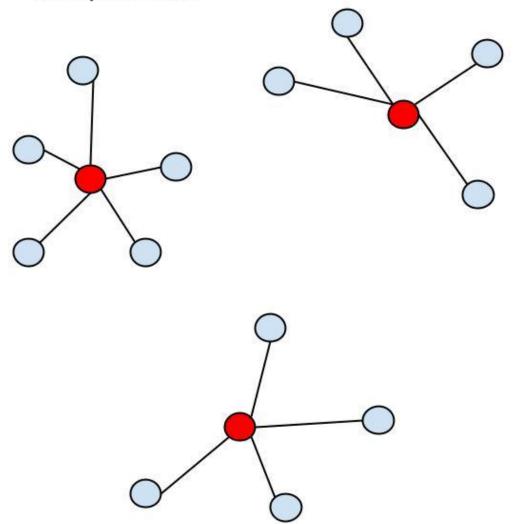
2) Prove
$$\alpha'(G) + \beta'(G) \ge n(G)$$

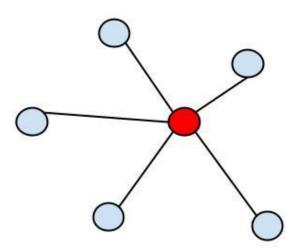
Let L: minimum edge cover. Suppose L has k connected component

Observation 1

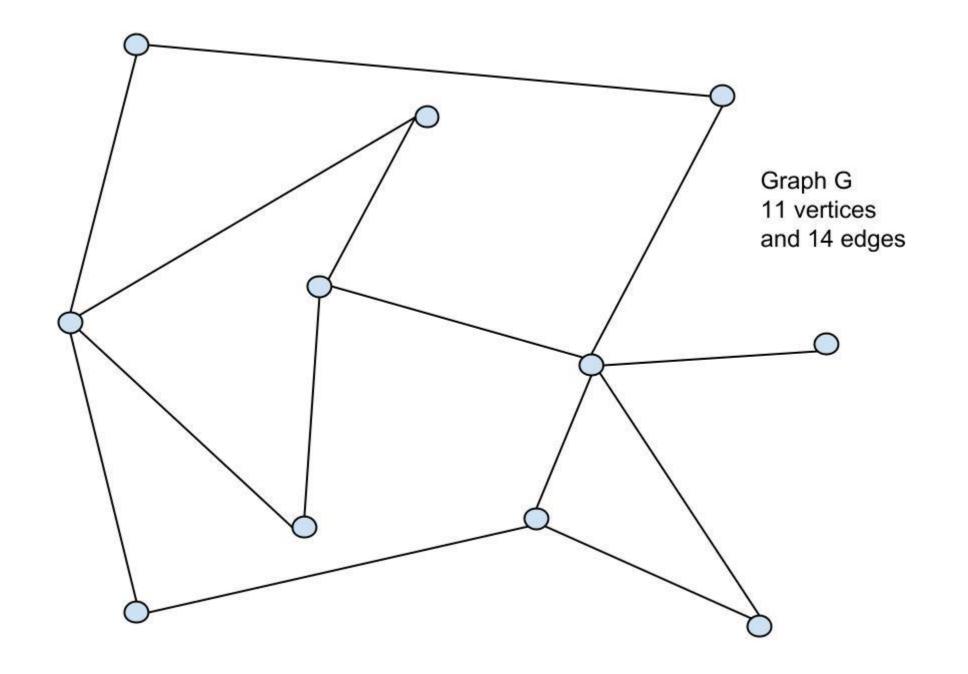


L consists of k star components



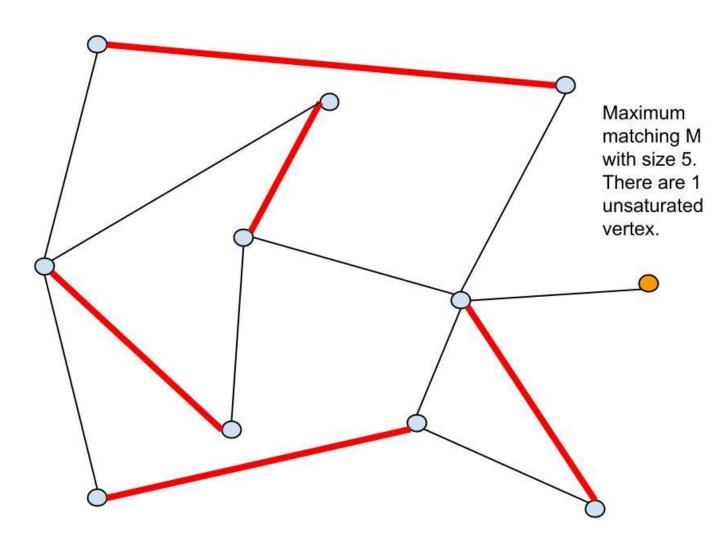


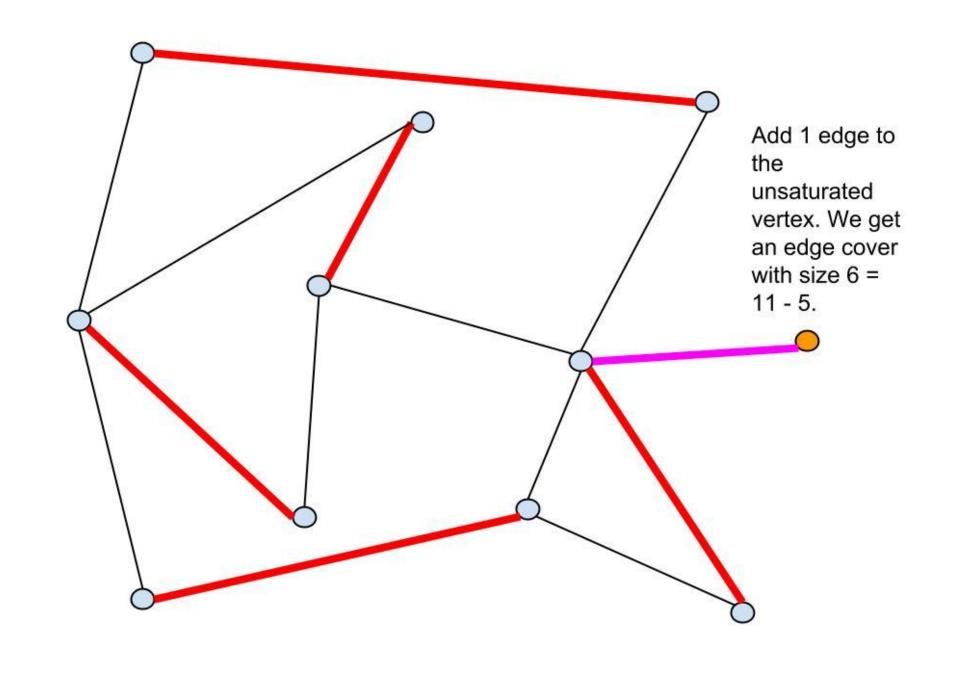
Example



1) Given maximum matching, construct edge

cover





2) Given edge cover set, construct maximum

matching set

