Geographical threshold graphs (GTGs)
 Cuong Nguyen
 B00556635

Construction

The GTG model is constructed from a set of n nodes placed independently and uniformly at random in a volume in \mathbb{R}^{d}. A nonnegative weight w_{i}, taken randomly and independently from a probability distribution function $f(w)$: $\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$, is assigned to each node v_{i} for $i \in[n]$. Let $F(x)=\int_{0}^{x} f(w) d w$ be the cumulative density function. For two nodes v_{i} and v_{j} at distance r, the edge (i, j) exists if and only if the following connectivity relation is satisfied:

$$
\begin{equation*}
G\left(w_{i}, w_{j}\right) h(r) \geq \theta_{n} \tag{2.1}
\end{equation*}
$$

where θ_{n} is a given threshold parameter that depends on the size of the network. The function $h(r)$ specifies the connection probability as a function of distance and is assumed to be decreasing in r. In the following we take $h(r)=r^{-\beta}$, for some positive β, which is typical, for example, of the path-loss model in wireless networks [Bradonjić and Kong 07]. The interaction strength between nodes $G\left(w_{i}, w_{j}\right)$ is typically taken to be symmetric (to produce an undirected graph) and either multiplicatively or additively separable, i.e., in the form of $G\left(w_{i}, w_{j}\right)=g\left(w_{i}\right) g\left(w_{j}\right)$ or $G\left(w_{i}, w_{j}\right)=g\left(w_{i}\right)+g\left(w_{j}\right)$.

Example

Here we restrict ourselves to the case of $g(w)=w, \beta=2$, and nodes distributed uniformly over a two-dimensional space. For analytical simplicity we take the space to be a unit torus, and use the additive model for the connectivity relation

$$
\begin{equation*}
\frac{w_{i}+w_{j}}{r^{2}} \geq \theta_{n} \tag{2.2}
\end{equation*}
$$

Example

Some examples of GTG instances with exponential weight distribution $f(w)=$ e^{-w} are shown in Figure 1.

Figure I. Instances of GTG with exponential weight distribution for $n=300$ at decreasing threshold parameter values (increasing mean degree): (a) $\theta_{n} / n=2 \pi$, well below the percolation transition; (b) $\theta_{n} / n=1$, above the percolation but below the connectivity transition; (c) $\theta_{n} / n=1 / 2 e$, well above connectivity.

(c)

Figure I. Instances of GTG with exponential weight distribution for $n=300$ at decreasing threshold parameter values (increasing mean degree): (a) $\theta_{n} / n=2 \pi$, well below the percolation transition; (b) $\theta_{n} / n=1$, above the percolation but below the connectivity transition; (c) $\theta_{n} / n=1 / 2 e$, well above connectivity.

Degree distribution

That is, the degree distribution d_{i} of a node v_{i} with weight w_{i} follows the binomial distribution

$$
\begin{equation*}
d_{i}\left(\cdot \mid w_{i}\right) \sim \operatorname{Bin}\left(n-1, p_{i}\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{i}=\frac{\pi}{\theta_{n}}\left(w_{i}+\mu\right) . \tag{3.3}
\end{equation*}
$$

Giant Component

Definition 4.I. (Giant Component.) The giant component is a connected component of size $\Theta(n)$.

In this section we analyze the conditions for the existence of the giant component, giving bounds on the threshold parameter value θ_{n} where it first appears.

Absence of Giant Component

Theorem 4.2. Let $\theta_{n}=g n$ for $g>g^{\prime}$, where $g^{\prime}=2 \pi \mu$. Then whp there is no giant component in GTG.
whp : with high probability

Existence of Giant Component

Theorem 4.3. Let $\theta_{n}=g n$ for $g<g^{\prime \prime}=\sup _{\alpha \in(0,1)} \alpha F^{-1}(1-\alpha) / \lambda_{c}$, where $\pi \lambda_{c} \approx$ 4.52 is the mean degree at which the giant component first appears in random geometric graphs (RGG) [Penrose 03]. Then whp the giant component exists in GTG.

Gap between two bounds

Claim 4.4. For any weight distribution $f(w), g^{\prime} / g^{\prime \prime} \geq 2 \pi \lambda_{c} \approx 9.04$.

Remark 4.5. For the exponential distribution $f(w)=\gamma \exp (-\gamma w)$, we have $g^{\prime}=$ $2 \pi / \gamma$.

Remark 4.6. If $\alpha F^{-1}(1-\alpha)$ has an extremum for $\alpha \in(0,1)$, this occurs at

$$
\alpha=F^{-1}(1-\alpha) f\left(F^{-1}(1-\alpha)\right) .
$$

For example, for the exponential distribution the maximum is at $\alpha=1 / e$, giving a bound of $g^{\prime \prime}=1 / e \gamma \lambda_{c}$.

Connectivity

Definition 5.I. (Connectivity.) The graph on n vertices is connected if the largest component has size n.

In this section we analyze conditions for connectivity, giving bounds on the threshold parameter θ_{n} at which the entire graph first becomes connected. Sim-

Disconnected Graph

Theorem 5.2. Let $\theta_{n}=\kappa n / \log n$ for $\kappa>\kappa^{\prime}$, where $\kappa>\pi \mu$. Then the $G T G$ is disconnected whp.

Connected Graph

Theorem 5.3. Let $\theta_{n}=\kappa n / \log n$ for $\kappa<\sup _{\alpha \in(0,1)} \alpha F^{-1}(1-\alpha) / 4$. Then the $G T G$ is connected whp.

Diameter

Lemma 6.I. Let the cumulative weight distribution function be $F(w)$ in the $G T G$ model. Let x and a sequence $s_{n}=\Theta\left(x^{2} \theta_{n}\right)$ be such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-F\left(s_{n}\right)^{n x^{2} / 2}\right)^{1 / x}=1 \tag{6.1}
\end{equation*}
$$

Then whp, diam $=O(1 / x)$.

Some class of Diamter

- Ultralow Latency: diam $=O(1)$. Let $x<1$ be a constant and $s_{n}=$ θ_{n}. If $F\left(\theta_{n}\right)^{n} \rightarrow 0$, then diam $=O(1)$ whp. For the exponential weight distribution it follows that $\theta_{n}=o(\log n)$.
- Low Latency: $\operatorname{diam}=O\left(\log ^{q} n\right)$. Let $x=1 / \log ^{q} n$ and $s_{n}=\theta_{n} / \log ^{2 q} n$. If $F\left(\theta_{n} / \log ^{2 q} n\right)^{n /\left(2 \log ^{2 q} n\right)} \log ^{q} n \rightarrow 0$, then diam $=O\left(\log ^{q} n\right)$ whp. For the exponential weight distribution it follows that

$$
\theta_{n}=o\left((\log n)^{2 q\left(1-\left(\log ^{2 q} n\right) / n\right)}\right)
$$

- High Latency: $\operatorname{diam}=O(\sqrt{n / \log n})$. Let $x=\sqrt{\log n / n}$ and $s_{n}=$ $\theta_{n} \log n / n$. If $\sqrt{n / \log n} F\left(\theta_{n} \log n / n\right)^{\log n} \rightarrow 0$, then diam $=O(\sqrt{n / \log n})$ whp. For the exponential weight distribution it follows that

$$
\theta_{n}=o\left((n / \log n)^{1-1 /(2 \log n)}\right) .
$$

