List Chromatic Number of Complete Bipartite Graphs

Emma Graham
Feb. 11. 2014

Proposition: (Erdös - Rubin - Taylor [1979])

$$
\begin{aligned}
\text { If } m= & (2 k-1) C(k) \text {, then } K_{m, m} \text { is } \\
& \text { not } k \text {-choosable }
\end{aligned}
$$

Proof:

Let X, Y be the bipartition of $G=K_{m, m}$. Assign distinct k-subsets of [2k-1] as the lists for the vertices of X and do the same for Y. Consider a choice function, f. If f uses fewer than k distinct choices in X, then there is a k set $\mathrm{S} \subseteq[2 \mathrm{k}-1]$ not used.

Which means that no colour was chosen for vertex of X having S as its list. If f uses at least k colours of X, then there is a k-set $S \subseteq[2 k-1]$ of colours used in X, and no colour can be properly chosen for vertex of Y with list S.

