Theorem. (Thomassen [1994b]) Planar graphs are 5choosable.

Hoa Tang

What is Planar Graph?

- A planar graph is a graph that can be drawn in the plane without edge-crossing.

Planar graph

Non-Planar Graph

Theorem. (Thomassen [1994b]) Planar graph are 5-choosable.

- Proof: Adding an edge never change the list-chromatic number, so we may restrict our attention to plane graphs in which the outer face is a cycle and every bounded face is a triangle.

-Induction Hypothesis:

We prove stronger result than the theorem.

Graph G with k vertices in which 2 vertices on the external cycle are colored.

We defined a stronger list than the 5 list :

- Vertices on the externa cycle has list of color with size >= 3
- Vertices in the inside has list of color with size $>=5$.

Then graph G is choosable with the given list

- Base case: $\mathrm{n}=3$, a color available for the third vertex.

-Induction Step: Consider $n>3$. Let v_{p}, v_{1} be the vertices with fixed colors on the external cycle C. Let v_{1}, \ldots, v_{p} be $V(C)$ in clockwise order. We have 2 cases:
- Case 1: C has a chord $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$ with $1 \leq \mathrm{I} \leq \mathrm{j}-2 \leq \mathrm{p}-2$.

- Case 2: C has no chord

8.4.32. Theorem. (Thomassen [1994b]) Planar graphs are 5-choosable.

Proof: Adding edges cannot reduce the list chromatic number, so we may restrict our attention to plane graphs where the outer face is a cycle and every bounded face is a triangle. By induction on $n(G)$, we prove the stronger result that a coloring can be chosen even when two adjacent external vertices have distinct lists of size 1 and the other external vertices have lists of size 3. For the basis step $(n=3)$, a color remains available for the third vertex.

Now consider $n>3$. Let v_{p}, v_{1} be the vertices with fixed colors on the external cycle C. Let v_{1}, \ldots, v_{p} be $V(C)$ in clockwise order.

Case 1: C has a chord $v_{i} v_{j}$ with $1 \leq i \leq j-2 \leq p-2$. We apply the induction hypothesis to the graph consisting of the cycle $v_{1}, \ldots, v_{i}, v_{j}, \ldots, v_{p}$ and its interior. This selects a proper coloring in which v_{i}, v_{j} receive some fixed colors. Next we apply the induction hypothesis to the graph consisting of the cycle $v_{i}, v_{i+1}, \ldots, v_{j}$ and its interior to complete the list coloring of G.

Case 2: C has no chord. Let $v_{1}, u_{1}, \ldots, u_{m}, v_{3}$ be the neighbors of v_{2} in order ($3=p$ is possible). Because bounded faces are triangles, G contains the path P with vertices $v_{1}, u_{1}, \ldots, u_{m}, v_{3}$. Since C is chordless, u_{1}, \ldots, u_{m} are internal vertices, and the outer face of $G^{\prime}=G-v_{2}$ is bounded by a cycle C^{\prime} in which P replaces v_{1}, v_{2}, v_{3}.

Let c be the color assigned to v_{1}. Since $\left|L\left(v_{2}\right)\right| \geq 3$, we may choose distinct colors $x, y \in L\left(v_{2}\right)-\{c\}$. We reserve x, y for possible use on v_{2} by forbidding x, y from u_{1}, \ldots, u_{m}. Since $\left|L\left(u_{i}\right)\right| \geq 5$, we have $\left|L\left(u_{i}\right)-\{x, y\}\right| \geq 3$. Hence we can apply the induction hypothesis to G^{\prime}, with u_{1}, \ldots, u_{m} having lists of size at least 3 and other vertices having the same lists as in G. In the resulting coloring, v_{1} and u_{1}, \ldots, u_{m} have colors outside (x, y). We extend this coloring to G by choosing for v_{2} a color in $\{x, y\}$ that does not appear on v_{3} in the coloring of G^{\prime}.

