The Geometric Protean Model for On-Line Social Networks

Anthony Bonato, Jeannette Janssen, and Pawel Pralat

- Introduce a new geometric, rank-based model for the link structure of on-line social networks (OSNs)
- With high probability, the geo-protean (GEO-P) model generates graph satisfying many observed properties of OSNs

Large-scale

- Complex network with large number of nodes

- Some nodes have very high degree.

Small world property and shrinking distance

- Demands a low diameter of O(log n), and a higher clustering coefficient than found in a binomial random graph with the same number of nodes and average degree

Power law degree distribution

- In a graph G of order n, let N_k be the number of nodes of degree k. The degree distribution of G follows a power law if N_k is proportional to k⁻ ^b, for a fixed exponent b >2.

Bad spectral expansion

- Social network often organize into separate clusters in which the intra-cluster links are significantly higher than the number of inter-cluster links

The GEO-P Model for OSNs

- Produces a sequence (G_t : t >= 0) of undirected graph on n nodes, where t denotes time. $G_t = (V_t, E_t)$.

- 4 parameters: the attachment strength $\alpha \in (0,1)$, the density parameter $\beta \in (0, 1-\alpha)$, the dimension $m \in N$, and the link probability $p \in (0,1]$

-Each nodes $v \in V_t$ has rank $r(v,t) \in [n]$

-The rank function r(', t): $V_t \rightarrow [n]$ is a bijection for allt , so every node has a unique rank.

-Highest ranked node has rank equal to 1, the lowest ranked node has rank n.

-For each $v \in V_{t-1}$ V_t , $r(v,t) = r(v, t-1) + \delta - \gamma$ where $\delta = 1$ if r(v, t - 1) > Rt and 0 otherwise, and $\gamma = 1$ if the rank of the node deleted in step t is smaller than r(v, t-1), and 0 otherwise. -Let S be the unit hypercube in Rm, with the torus metric $d(\cdot, \cdot)$ derived from the L ∞ metric. In particular, for any two points x and y in Rm, $d(x, y) = min\{||x-y+u||\infty : u \in \{-1,0,1\}m\}.$

-To initialize the model, let G0 = (V0, E0) be any graph on n nodes that are chosen from S. We define the influence region of node v at time t \geq 0, written R(v, t), to be the ball around v with volume $|R(v, t)| = r(v, t) - \alpha n - \beta$ For t \geq 1, we form Gt from Gt-1 according to the following rules.

1. Add a new node v that is chosen uniformly at random from S. Next, independently, for each node $u \in Vt-1$ such that $v \in R(u, t - 1)$, an edge vu is created with probability p. Note that the probability that u receives an edge

is equal to p r(u, t-1)- α n- β .

The negative exponent $(-\alpha)$ guarantees that

nodes with higher ranks (r(u, t-1) close to 1) are more likely to receive new edges than lower ranks

2. Choose uniformly at random a node $u \in Vt-1$, delete u and all edges incident

to u.

3. Update the ranking function $r(\cdot, t) : Vt \rightarrow [n]$.

The following theorem demonstrates that the geo-protean model generates power law graphs with exponent

$$b = 1 + 1/\alpha$$

Theorem 1. Let $\alpha \in (0, 1)$, $\beta \in (0, 1 - \alpha)$, $m \in \mathbb{N}$, $p \in (0, 1]$, and $n^{1-\alpha-\beta} \log^{1/2} n \le k \le n^{1-\alpha/2-\beta} \log^{-2\alpha-1} n$.

Then wep $GEO-P(\alpha, \beta, m, p)$ satisfies

$$N_{\geq k} = \left(1 + O(\log^{-1/3} n)\right) \frac{\alpha}{\alpha + 1} p^{1/\alpha} n^{(1-\beta)/\alpha} k^{-1/\alpha}.$$

For a graph G = (V, E) of order *n*, define the *average degree of* G by $d = \frac{2|E|}{n}$. Our next results shows that geo-protean graphs are dense.

Theorem 2. Wep the average degree of $GEO-P(\alpha, \beta, m, p)$ is

$$d = (1 + o(1))\frac{p}{1 - \alpha}n^{1 - \alpha - \beta}.$$
(2)

Note that the average degree tends to infinity with n; that is, the model generates graphs satisfying a *densification power law*. In [17], densification power laws were reported in several real-world networks such as the physics citation graph and the internet graph at the level of autonomous systems.

Our next result describes the diameter of graphs sampled from the GEO-P model. While the diameter is not shrinking, it can be made constant by allowing the dimension to grow as a logarithmic function of n.

Theorem 3. Let $\alpha \in (0,1)$, $\beta \in (0,1-\alpha)$, $m \in \mathbb{N}$, and $p \in (0,1]$. Then we the diameter of GEO-P(α, β, m, p) is

$$O(n^{\frac{\beta}{(1-\alpha)m}}\log^{\frac{2\alpha}{(1-\alpha)m}}n).$$
(3)

We note that in a geometric model where regions of influence have constant volume and possessing the same average degree as the geo-protean model, the diameter is $\Theta(n^{\frac{\alpha+\beta}{m}})$. This is a larger diameter than in the GEO-P model. If $m = C \log n$, for some constant C > 0, then we we obtain a diameter bounded by a constant. We conjecture that we the diameter is of order $n^{\frac{\beta}{(1-\alpha)m}+o(1)}$. In the full version of the paper, we prove that we the GEO-P model generates graph with constant clustering coefficient.

The normalized Laplacian of a graph relates to important graph properties; see [7]. Let A denote the adjacency matrix and D denote the diagonal degree matrix of a graph G. Then the normalized Laplacian of G is $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$. Let $0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1} \leq 2$ denote the eigenvalues of \mathcal{L} . The spectral gap of the normalized Laplacian is

$$\lambda = \max\{|\lambda_1 - 1|, |\lambda_{n-1} - 1|\}.$$

A spectral gap bounded away from 0 is an indication of bad expansion properties, which are characteristic of OSNs (see property (iv) in the introduction). The next theorem represents a drastic departure from the good expansion found in binomial random graphs, where $\lambda = o(1)$ [7,8].

Theorem 4. Let $\alpha \in (0,1)$, $\beta \in (0,1-\alpha)$, $m \in \mathbb{N}$, and $p \in (0,1]$. Let $\lambda(n)$ be the spectral gap of the normalized Laplacian of GEO-P(α, β, m, p). Then wep

1. If
$$m = m(n) = o(\log n)$$
, then $\lambda(n) = 1 + o(1)$.
2. If $m = m(n) = C \log n$ for some $C > 0$, then

$$\lambda(n) \ge 1 - \exp\left(-\frac{\alpha + \beta}{C}\right).$$

Dimension of OSNs

-Given an OSN, we may estimate the corresponding dimension parameter m if we assume the GEO-P model.

-In particular, if we know the order n, power law exponent b, average degree d, and diameter D of an OSN, then we can calculate m using our theoretical results.

-An estimate for m is given by:

$$m = \frac{1}{D^*} \left(1 - \left(\frac{b-1}{b-2}\right) d^* \right).$$

The following chart gives the predicted dimension m for each network. We round m up to the nearest integer

n is total number of users for Cyworld, Flickr, Twitter, and YouTube

b is the power law exponent for the in-degree distribution

Parameter				
	Cyworld	Flickr	Twitter	YouTube
n	2.4×10^7	3.2×10^7	$7.5 imes 10^7$	3×10^{8}
b	5	2.78	2.4	2.99
d^*	0.22	0.17	0.17	0.1
D^*	0.11	0.19	0.1	0.16
m	7	4	5	6