Connectivity of *k*-critical graphs

Melanie Foerster

Math 4330: Topics in Graph Theory Dr. Jeannette Janssen

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of G[X] and G[Y]. If there is no edge between X_i and Y_j then $X_i \bigcup Y_j$ is an independent set in G.

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of G[X] and G[Y]. If there is no edge between X_i and Y_j then $X_i \bigcup Y_j$ is an independent set in G.

We will show that if |[X, Y]| < k then we can combine colour classes from G[X] and G[Y] in pairs to form a proper k-colouring of G.

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of G[X] and G[Y]. If there is no edge between X_i and Y_j then $X_i \bigcup Y_j$ is an independent set in G.

We will show that if |[X, Y]| < k then we can combine colour classes from G[X] and G[Y] in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k , putting $X_i Y_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j . If |[X, Y]| < k, then H has more than k(k-1) edges.

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of G[X] and G[Y]. If there is no edge between X_i and Y_j then $X_i \bigcup Y_j$ is an independent set in G.

We will show that if |[X, Y]| < k then we can combine colour classes from G[X] and G[Y] in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k , putting $X_i Y_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j . If |[X, Y]| < k, then H has more than k(k-1) edges. Since m vertices can cover at most km edges in a subgraph of $K_{k,k}$, then E(H) cannot be covered by k-1 vertices. By the König-Egerváry Theorem, H therefore has a perfect matching M.

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colourable, then the edge cut [X, Y] has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of G[X] and G[Y]. If there is no edge between X_i and Y_j then $X_i \bigcup Y_j$ is an independent set in G.

We will show that if |[X, Y]| < k then we can combine colour classes from G[X] and G[Y] in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k , putting $X_i Y_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j . If |[X, Y]| < k, then H has more than k(k-1) edges. Since m vertices can cover at most km edges in a subgraph of $K_{k,k}$, then E(H) cannot be covered by k-1 vertices. By the König-Egerváry Theorem, H therefore has a perfect matching M.

In *G*, we give colour *i* to all of X_i and all of the set Y_j to which it is matched by *M*. Since there are no edges joining X_i and Y_j , doing this for all *i* produces a proper *k*-colouring of *G*, which contradicts the hypothesis that $\chi(G) > k$. Hence $|[X, Y]| \ge k$.

Theorem (Dirac, 1953)

Every k-critical graph is k - 1-edge-connected.

Theorem (Dirac, 1953)

Every k-critical graph is k - 1-edge-connected.

Proof. Let G be a k-critical graph, and let [X, Y] be a minimum edge cut. Since G is k-critical, G[X] and G[Y] are k - 1-colourable.

Theorem (Dirac, 1953)

Every k-critical graph is k - 1-edge-connected.

Proof. Let *G* be a *k*-critical graph, and let [X, Y] be a minimum edge cut. Since *G* is *k*-critical, G[X] and G[Y] are k - 1-colourable. Using the lemma with k - 1 in place of *k*, we conclude that $|[X, Y]| \ge k - 1$.