Connectivity of k-critical graphs

Melanie Foerster

Math 4330: Topics in Graph Theory
Dr. Jeannette Janssen
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G. We will show that if $|X, Y| < k$ then we can combine colour classes from $G[X]$ and $G[Y]$ in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k, putting $X_i Y_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j. If $|X, Y| < k$, then H has more than $k(k - 1)$ edges. Since m vertices can cover at most km edges in a subgraph of K_k, then $E(H)$ cannot be covered by $k-1$ vertices. By the Kőnig-Egerváry Theorem, H therefore has a perfect matching M.

In G, we give colour i to all of X_i and all of the set Y_j to which it is matched by M. Since there are no edges joining X_i and Y_j, doing this for all i produces a proper k-colouring of G, which contradicts the hypothesis that $\chi(G) > k$. Hence $|X, Y| \geq k$. □
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G.

\square
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G.

We will show that if $|[X, Y]| < k$ then we can combine colour classes from $G[X]$ and $G[Y]$ in pairs to form a proper k-colouring of G.
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G.

We will show that if $|[X, Y]| < k$ then we can combine colour classes from $G[X]$ and $G[Y]$ in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k, putting $X_iY_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j. If $|[X, Y]| < k$, then H has more than $k(k - 1)$ edges.
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G.

We will show that if $|[X, Y]| < k$ then we can combine colour classes from $G[X]$ and $G[Y]$ in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k, putting $X_iY_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j. If $|[X, Y]| < k$, then H has more than $k(k - 1)$ edges. Since m vertices can cover at most km edges in a subgraph of $K_{k,k}$, then $E(H)$ cannot be covered by $k - 1$ vertices. By the König-Egerváry Theorem, H therefore has a perfect matching M.

□

Melanie Foerster
Connectivity of k-critical graphs
Lemma (Kainen)

Let G be a graph with $\chi(G) > k$, and let X, Y be a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colourable, then the edge cut $[X, Y]$ has at least k edges.

Proof. Let X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k be the partitions of X and Y formed by the colour classes in proper k-colourings of $G[X]$ and $G[Y]$. If there is no edge between X_i and Y_j then $X_i \cup Y_j$ is an independent set in G.

We will show that if $|[X, Y]| < k$ then we can combine colour classes from $G[X]$ and $G[Y]$ in pairs to form a proper k-colouring of G.

Form a bipartite graph H with vertices X_1, X_2, \ldots, X_k and Y_1, Y_2, \ldots, Y_k, putting $X_i Y_j \in E(H)$ if in G there is no edge between the set X_i and the set Y_j. If $|[X, Y]| < k$, then H has more than $k(k - 1)$ edges. Since m vertices can cover at most km edges in a subgraph of $K_{k,k}$, then $E(H)$ cannot be covered by $k - 1$ vertices. By the König-Egerváry Theorem, H therefore has a perfect matching M.

In G, we give colour i to all of X_i and all of the set Y_j to which it is matched by M. Since there are no edges joining X_i and Y_j, doing this for all i produces a proper k-colouring of G, which contradicts the hypothesis that $\chi(G) > k$. Hence $|[X, Y]| \geq k$. □
Theorem (Dirac, 1953)

Every k-critical graph is $k - 1$-edge-connected.
Theorem (Dirac, 1953)

Every k-critical graph is $k-1$-edge-connected.

Proof. Let G be a k-critical graph, and let $[X, Y]$ be a minimum edge cut. Since G is k-critical, $G[X]$ and $G[Y]$ are $k-1$-colourable.
Theorem (Dirac, 1953)

Every k-critical graph is $k - 1$-edge-connected.

Proof. Let G be a k-critical graph, and let $[X, Y]$ be a minimum edge cut. Since G is k-critical, $G[X]$ and $G[Y]$ are $k - 1$-colourable. Using the lemma with $k - 1$ in place of k, we conclude that $|X, Y| \geq k - 1$. □