Definition: The cartesian product of G and H, written $G \square H$ is the graph with vertex set $V(G) \times V(H)$ specified by putting (u, v) adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if
(1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$,
or
(2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Example: $C_{3} \square C_{4}$

The cartesian product operation is symmetric;
$G \square H \cong H \square G$.
The hypercube is another familiar example.

Proposition: $\chi(G \square H)=\max \{\chi(G), \chi(H)\}$

Proof: The cartesian product $G \square H$ contains copies of G and H as subgraphs, so $\chi(G \square H) \geq \max \{\chi(G), \chi(H)\}$

Let $k=\max \{\chi(G), \chi(H)\}$. To prove the upper bound, we produce a proper k-colouring of $G \square H$ using optimal colourings of G and H. Let g be a proper $\chi(G)$-colouring of G, and let h be a proper $\chi(H)$-colouring of H.

Define a colouring f of $G \square H$ by letting $f(u, v)$ be the congruence class of $g(u)+h(v)$ modulo k. Thus f assigns colours to $V(G \square H)$ from a set of size k.

We claim that f properly colours $G \square H$. If (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent in $G \square H$,then $g(u)+h(v)$ and $g\left(u^{\prime}\right)+h\left(v^{\prime}\right)$ agree in one summand and differ by between 1 and k in the other. Since the difference of the two sums is between 1 and k, they lie in different congruence classes modulo k.

The cartesian product allows us to compute chromatic numbers by computing independence numbers, because a graph G is m colourable if and only if the cartesian product $G \square K_{m}$ has an independent set of size $n(G)$.

