Theorem (Berge 1957)
A matching M in a graph G is a maximum matching if and only if G has no M augmenting path.

We have already seen in class that if a matching M is a maximum matching then G has no augmenting path

Want to prove that if G has no M augmenting path then a matching M is a maximum matching

Will prove this by showing that if M is not a maximum matching then G has an M augmenting path
This is the contrapositive

Suppose M is not a maximum matching. Then there is a matching M^{\prime} which is larger than M

G

M
$|M|=4$
M^{\prime}
$\left|M^{\prime}\right|=5$

Consider the set S of edges that belong to M or M' but not both
S is called the symmetric difference of M and M^{\prime}

In this example M and M ' share no edges so S is the union of the two matchings

Let H be the graph formed by the edges in S and their endpoints

H

Since both M and M ' are matchings, every vertex of H has degree at most 2

If H had a vertex of degree greater than 2 , two edges of M or M ' would have to have a vertex in common which cannot happen in a matching

So H is a collection of disjoint paths and cycles

Every cycle and path must be Malternating so every cycle must be even

If a component is not M-alternating then there would be two adjacent M-edges which cannot happen in a matching

Since M^{\prime} is larger than M, H must contain more M^{\prime}-edges than M-edges

Therefore there must be a component of H that contains more M^{\prime}-edges than M edges

This component must be a path, say P

It cannot be a cycle as all cycles are even so contain the same number of M and M^{\prime} edges

Since P has more M ' edges than M edges P must be of odd length

If P was of even length P would contain the same number of M and M^{\prime} edges as it is M -alternating

P must also start and end with an M^{\prime} edge.

Removing either final edge gives an even alternating path P'

We know that the original path P had more edges in M^{\prime} than in $M=>$ removed edge must be in M^{\prime}

We know have that the path must start and finish with an edge from M^{\prime}

Moreover since P is a maximum connected component of H the endpoints of P must be M-unmatched

If the endpoints were M-matched then the component could be extended so would not be maximum

So P is an M -alternating path whose endpoints are M-unmatched

Thus P is an M -augmenting path

END OF PROOF

In our example the M-augmenting path can be used to extend the matching so it has size 5

