Turán graphs

First, a definition...

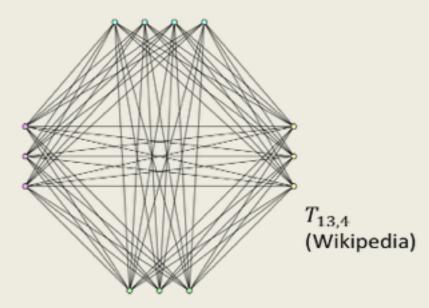
Definition: A **complete multipartite graph** is a simple graph G whose vertices can be partitioned into sets so that u <-> v if and only if u and v belong to different sets of the partition. Equivalently, every component of \overline{G} is a complete graph.

A complete k-partite graph is k-chromatic where the partite sets are the colour classes in the only proper k-colouring.

An example of one of these graphs is a Turán graph

A **Turán graph** $T_{n,r}$ is the complete r-partite graph with n vertices whose partite sets differ in size by at most 1. By the pigeonhole principle, some partite set has at least size $\lceil n/r \rceil$ and some has size $\lceil n/r \rceil$. Therefore, differing by at most 1 means that they all have size $\lceil n/r \rceil$ or $\lceil n/r \rceil$.

Let $a = \lfloor n/r \rfloor$. After putting a vertices in each partite set, b = n-ra remain, so $T_{n,r}$ has b partite sets of size a+1 and r-b partite sets of size a.



Lemma: Among simple r-partite (r-colourable) graphs with n vertices, the Turán graph is the unique graph with the most edges.

Theorem: (Turán 1941) Among the n-vertex simple graphs with no r+1 clique, $T_{n,r}$ has the maximum number of edges.

Proof: The Turán graph $T_{n,r}$, like every r-colourable graph, has no r+1 clique, since each partite set contributes at most one vertex to each clique. If we can prove the maximum is achieved by an r-partite graph, then the previous Lemma implies that the maximum is achieved by $T_{n,r}$. Thus it suffices to prove that if G has no r+1-clique, then there is an r-partite graph H with the same vertex set as G and at least as many edges.

We prove this by induction on r...

Induction base: r = 1.

G and H have no edges.

Induction step: r > 1.

Let G be an n-vertex graph with no r+1-clique, and let $x \in V(G)$ be a vertex of degree $k = \Delta(G)$. Let G' be the subgraph of G induced by the neighbours of x. Since x is adjacent to every vertex in G' and G has no r+1-clique, the graph G' has no r-clique. We can thus apply the induction hypothesis to G'; this yields an r-1-partite graph H' with vertex set N(x) such that $e(H') \geq e(G')$.

Let H be the graph formed from H' by joining all of N(x) to all of S = V(G) - N(x). Since S is an independent set, H is r-partite. We claim that $e(H) \ge e(G)$. By construction, e(H) = e(H') + k(n-k). We also have $e(G) \le e(G') + \Sigma_{v \in S} d_G(v)$, since the sum counts each edge of G once for each endpoint it has outside V(G'). Since $\Delta(G) = k$, we have $d_G(v) \le k$ for each $v \in S$, and |S| = n - k, so $\Sigma_{v \in S} d_G(v) \le k(n-k)$. As desired, we have

$$e(G) \le e(G') + k(n-k) \le e(H') + k(n-k) = \le e(H)$$

