## MATH 4370/5370 <br> Material for self-study, Jan. 27-Feb. 5

A partially ordered set, or poset, is a set $P$ with a binary relation $\prec$ which is reflexive, anti-symmetric and transitive. Two elements $a, b \in P$ are comparable if $a \prec b$ or $b \prec a$, otherwise they are incomparable. A chain is a subset $C$ of $P$ so that any two elements of $C$ are comparable. A chain $C$ is maximal if there is no other chain that contains $C$ as a proper subset. An antichain is a subset $A$ of $P$ so that any two elements of $A$ are comparable. An antichain $A$ is maximal if there is no other antichain that contains $A$ as a proper subset.
A maximal element of $P$ is an element $a$ so that, for any $b \in P, a \prec b \Rightarrow a=b$. A minimal element is defined similarly.
Dilworth Let $P$ be a poset. The minimum number $m$ of disjoint chains which together contain all elements of $P$ is equal to the maximum number $M$ of elements in an antichain of $P$.
Since an antichain and a chain can intersect in at most one element, we have that $m \leq M$. To prove the other part, use induction on $|P|$. If $|P|=0$ there is nothing to prove. Let $C$ be a maximal chain in $P$. If every antichain in $P \backslash C$ contains at most $M-1$ elements, we are done. So assume that $\left\{\alpha_{1}, \ldots, \alpha_{M}\right\}$ is an antichain in $P \backslash C$. Define $S^{-}=\left\{x \in P: \exists i, x \prec \alpha_{i}\right\}$, and define $S^{+}$analogously. Since $C$ is maximal, the largest element in $C$ is not in $S^{-}$and hence $\left|S^{-}\right|<|P|$ and by the induction hypothesis, the theorem holds for $S^{-}$. Hence $S^{-}$is the union of $M$ disjoint chains. Moreover, each of these chains has exactly one of the elements $\alpha_{i}$ as its maximal element. Similarly, $S^{+}$is the union of $M$ disjoint chains, each of which has exactly one of the elements $\alpha_{i}$ as its minimal element. Combining the chains in $S^{-}$and $S^{+}$ that contain the same $\alpha_{i}$, we obtain $M$ disjoint chains whose union is $P$.
[Minsky] Let $P$ be a partially ordered set. If $P$ possesses no chain of $m+1$ elements, then $P$ is the union of $m$ antichains. Induction on $m$. If $m=1$, then all elements of $P$ are incomparable, and $P$ is itself an antichain. Let $m \geq 2$ and assume the theorem is true for $m-1$. Let $M$ be the set of maximal elements of $P$. Clearly, $M$ is an antichain. Let $C$ be any maximal chain in $P$. Then $C$ must contain an element of $M$. Therefore, $P \backslash M$ possesses no chain of $m$ elements. By the induction hypothesis, $P \backslash M$ is the union of $m-1$ antichains. This proves the theorem.
[Sperner's theorem] If $A_{1}, \ldots, A_{m}$ are subsets of $[n]$ so that no two sets $A_{i}$ are subsets of one another, then $m \leq\binom{ n}{\lfloor n / 2\rfloor}$.
To prove this, consider the poset of subsets of $[n]$ and the relation $\subseteq$. See Jukna, Theorem 8.3.
Such a collection of sets is sometimes called an intersecting family. See Sections 7.1 and 7.2, Jukna.

The following is a folklore result. If the edges of the complete graph $K_{7}$ are coloured red and blue, then there must be a red or a blue triangle. In general, the Ramsey number $R(r, k)$ is the smallest integer $n$ so that, if the edges of $K_{n}$ are coloured with $r$ colours, there is a always a monochromatic $K_{k}$. Ramsey's theorem says that this number is well-defined, i.e. there always exists such an integer $n$. Read more about Ramsely numbers in Cameron, Section 10.1-4.

