
Hall’s Condition

Given a collection of sets A1, . . . , An, a System of Distinct Representatives
(SDR) is a collection of distinct elements x1, . . . , xn so that, for 1 ≤ i ≤ n,
xi ∈ Ai.

Given an index set J ⊆ {1,2, . . . , n},

A(J) =
⋃
j∈J

Aj,

so A(J) is the union of all sets whose index is in J.

A collection of sets A1, . . . , An satisfies Hall’s Condition (HC) if,

for every index set J ⊆ {1,2, . . . , n}, |A(J)| ≥ |J |.
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Hall’s Theorem

Hall’s Theorem: For every collection of sets collection of sets A1, . . . , An, there
exists a System of Distinct Representatives if and only if Hall’s Condition holds.

Proof. SDR⇒ HC. Let x1, . . . , xn be an SDR for the collection of sets A1, . . . , An.
Fix J ⊆ {1,2, . . . , n}, and let

S = {xj : j ∈ J}.
Since all xi are distinct, |S| = |J |. By definition of an SDR, S ⊆ A(J), so
|S| ≤ |A(J)|. Thus |J | ≤ |A(J)|. �
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Hall’s Theorem: proof of sufficiency

Hall’s Theorem: For every collection of sets collection of sets A1, . . . , An, there
exists a System of Distinct Representatives if and only if Hall’s Condition holds.

Proof. HC⇒ SDR. Induction on n.

Base case: n = 1. HC implies that |A1| ≥ 1, so A1 6= ∅. Thus we can choose
x1 ∈ A1, which is an SDR.

Induction step. Fix n > 1. Suppose HC⇒ SDR for all collections of less than n
sets. Let A1, . . . , An be a collection of sets for which HC holds. We distinguish
two cases.

Case 1: For all non-empty J ⊂ {1,2, . . . , n}, |A(J)| > |J |.

Case 2: There exists non-empty J ⊂ {1,2, . . . , n} so that |A(J) = |J |.
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Hall’s Theorem: proof of sufficiency

Case 1: For all non-empty J ⊂ {1,2, . . . , n}, |A(J)| > |J |. Pick xn ∈ An. (An is
not empty because of HC applied to J = {n}).

Remove xn from all other sets. Formally, let A′j = Aj−{xn} for all 1 ≤ j ≤ n−1.

Claim: A′1, . . . , A
′
n−1 satisfies HC.

Proof of claim: take J ⊆ {1,2, . . . , n − 1}. Then A′(J) = A(J) − {xn}, so
|A′(J)| ≥ |A(J)| − 1. By assumption of this case, |A(J)| ≥ |J | + 1. Thus
|A′(J)| ≥ |J |. �.

Therefore, an SDR for A′1, . . . , A
′
n−1 exists, by the induction hypothesis, and

none of the representatives equals xn. Adding xn gives an SDR for the original
collection.

4



Hall’s Theorem: proof of sufficiency

Case 2: There exists non-empty J ⊂ {1,2, . . . , n} so that |A(J) = |J |. Let
J̄ = {1,2, . . . , n} − J.

The collection of sets Aj, j ∈ J satisfies Hall’s condition, and, since J is a
strict subset of {1,2, . . . , n}, the collection contains less than n sets. So, by
the induction hypothesis, we can find an SDR for this collection. Note that
all elements in A(J) must be part of this SDR.

Remove the elements of this SDR from all remaining sets. Formally, for all
j ∈ J̄, let A′j = Aj −A(J).

Claim: The collection of sets A′j, j ∈ J̄ satisfies HC.

Assuming the claim, by the induction hypothesis there exists an SDR for A′j,

j ∈ J̄. By construction, this SDR does not contain any elements from A(J).
Combining the two SDRs gives an SDR for the original collection.
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Hall’s Theorem: proof of sufficiency

Case 2: There exists non-empty J ⊂ {1,2, . . . , n} so that |A(J) = |J |. Let
J̄ = {1,2, . . . , n} − J.

For all j ∈ J̄, let A′j = Aj −A(J).

Claim: The collection of sets A′j, j ∈ J̄ satisfies HC.

Proof of claim: take K ⊆ J̄. Suppose by contradiction that |A′(K)| < |K|.

Consider A(K ∪ J). Note that

A(K) ⊆ A′(K) ∪A(J), so A(K ∪ J) = A(K) ∪A(J) = A′(K) ∪A(J).

Since A′(K) and A(J) are disjoint, we have

|A(K ∪ J)| ≤ |A′(K)|+ |A(J)| < |K|+ |J |,
since |A(J)| = |J | by assumption of this case. This contradicts the original
assumption that HC holds for A1, . . . , An. �
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