MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to Problem Set 1 (due Sept. 16)

Problem 1, Handout 1

- (a) (2) Suppose $a \in I \cap J$ and $k \in \mathbb{Z}$. We want to show that $ka \in I \cap J$. By assumption, we know that $a \in I$ and $a \in J$. Therefore, by property (2) of I and J, $ka \in I$ and $ka \in J$. Therefore $ka \in I \cap J$.
 - (3) Since *I* is an ideal, we know $0 \in I$ by property (3) of *I*. Similarly $0 \in J$ by property (3) of *J*. It follows that $0 \in I \cap J$.
- (b) (1) Suppose $a, b \in I + J$. We want to show that $a + b \in I + J$. We know that $a = a_1 + a_2$, for some $a_1 \in I$ and $a_2 \in J$. Similarly, $b = b_1 + b_2$ for some $b_1 \in I$ and $b_2 \in J$. It follows that $a + b = (a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2) \in I + J$ by property (1) of I and J.
 - (2) Suppose $a \in I + J$ and $k \in \mathbb{Z}$. We want to show that $ka \in I + J$. But $a = a_1 + a_2$ for some $a_1 \in I$ and $a_2 \in J$, therefore $ka_1 \in I$ and $ka_2 \in J$ by property (2) of I and J. Thus $ka = ka_1 + ka_2 \in I + J$, as desired.
 - (3) We want to show that $0 \in I + J$. But $0 \in I$ and $0 \in J$, thus $0 = 0 + 0 \in I + J$.

Problem 2, Handout 1 Suppose n|m and m|p. By definition of divisibility, there are integers k and l such that nk = m and ml = p. It follows that n(kl) = (nk)l = ml = p, and thus n|p.

Problem 3, Handout 1 " \Rightarrow ": Suppose $a\mathbb{Z} \subseteq b\mathbb{Z}$. Because $a = a \cdot 1$, we have $a \in a\mathbb{Z}$, hence $a \in b\mathbb{Z}$. This means that a = bk for some $k \in Z$, hence b|a.

" \Leftarrow ": Suppose b|a. By definition of divisibility, we have a = bl for some $l \in \mathbb{Z}$. We want to show that $a\mathbb{Z} \subseteq b\mathbb{Z}$. So take any element $x \in a\mathbb{Z}$. Then x = ak for some $k \in \mathbb{Z}$. It follows that x = ak = blk, hence $x \in b\mathbb{Z}$.

Problem 4, Handout 1 (a) If we drop the word "non-empty", the principle is not valid. Counterexample: the empty set \emptyset has no least element. (b) If we drop the word "positive", the principle is not valid. Counterexample: the set \mathbb{Z} of all integers has no least element. (c) If we replace "integer" by "rational number",

the principle is not valid. Counterexample: the set $A = \{x \in \mathbb{Q} \mid x > 0\}$ has no least element. Proof: take any $x \in A$. Then $x/2 \in A$ as well. Since x/2 < x, x is not a least element. (d) If we replace the word "positive" by "non-negative", the principle is valid. Proof: Let A be any non-empty set of non-negative integers. Then either $0 \in A$, in which case 0 is the least element of A. Otherwise, $0 \notin A$, in which case A is a non-empty set of positive integers and the original well-foundedness principle applies.

Problem 1.2 #7 (a) Suppose d > 0, d|(11k+4), and d|(10k+3) for some integer k. Then d|10(11k+4) + (-11)(10k+3) by Theorem 2(4), p.37. Therefore d|110k+40-110k-33, hence d|7. Since 7 is prime, we have d = 1 or d = 7.

(b) Suppose d > 0, d|(35k + 26), and d|(7k + 3) for some integer k. Then d|1(35k + 26) + (-5)(7k + 3) by Theorem 2(4), p.37. Therefore d|35k + 26 - 35k - 15, hence d|11. Since 11 is prime, it follows that d = 1 or d = 11.

Problem 1.2 #16 Suppose n|k(n + 1). Then there exists $a \in \mathbb{Z}$ such that na = k(n + 1), hence na = kn + k, hence n(a - k) = k, hence n|k.