
MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to the Final Exam

Problem 1. Supposed andk are integers such thatd > 0, d|(11k+ 4), andd|(10k+ 3). Show that
d = 1 or d = 7.

Answer: Under the given hypotheses, we know thatd|10(11k + 4) + (−11)(10k + 3).. Therefore
d|110k + 40− 110k − 33, henced|7. Since7 is prime, we haved = 1 or d = 7.

Problem 2. (a) Show that no integer of the formk2 + 1 is a multiple of7.

Answer: The equation7|(k2 + 1) is equivalent tōk2 + 1 ≡ 0(mod 7), or k̄2 ≡ −1(mod 7). The
squares inZ7 are02 = 0, 12 = (−1)2 = 1, 22 = (−2)2 = 4, 32 = (−3)2 = 9 = 2. Hence no
square inZ7 is equal to−1.

(b) Find all integersk such thatk2 + 1 is a multiple of13.

Answer: As in part (a), this is equivalent to finding allk such that̄k2 ≡ −1(mod 13). We examine
all squares inZ13: 02 = 0, 12 = (−1)2 = 1, 22 = (−2)2 = 4, 32 = (−3)2 = 9, 42 = (−4)2 = 16 =
3, 52 = (−5)2 = 25 = −1. We may stop here, as we have found two solutionsk̄ = ±5, andZ13 is
a field and therefore a quadratic equation has no more than 2 solutions. Thus, the general solution
is k̄ ≡ ±5(mod 13). This means, the general integer solution isk ∈ {5 + 13a,−5 + 13a | a ∈ Z},
or k ∈ {. . . ,−8,−5, 5, 8, 18, 21, . . .}.

Problem 3. Consider the following set of real2× 2-matrices:

R =

{(
a b
−b a

)
| a, b ∈ R

}
.

(a) Show thatR is a commutative ring, with the usual operations of addition and multiplication of
matrices. (You may assume common properties of matrices without proof).

Answer: We already know that the set of all2×2-matrices forms a (non-commutative) ring. Thus,
it suffices to check thatR is a subring, and thatR is commutative. To check that it is a subring, we
must check that it contains0 and1, and is closed under addition, multiplication, and negation. We

note that0 ∈ R and1 ∈ R. Further, ifA =

(
a b
−b a

)
andB =

(
c d
−d c

)
, then

A+B =

(
a+ c b+ d
−(b+ d) a+ c

)
∈ R

−A =

(
−a −b
b −a

)
∈ R

AB =

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
∈ R

Finally we check commutativity:

BA =

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
= AB.
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(b) IsR a field? Prove or give a counterexample.

Answer: Each matrix inR has determinanta2 + b2, and thus it is invertible unlessa = b = 0. It
remains to check that the inverse is indeed inR. But we have(

a b
−b a

)−1

=
1

a2 + b2

(
a −b
b a

)
,

hence, the inverse is inR (if (a, b) 6= (0, 0)). Thus,R is a field. (Note:R is indeed isomorphic to

the field of complex numbersC, via the isomorphisma+ bi 7→
(
a b
−b a

)
).

Problem 4. Recall that the factorial ofn is defined asn! = 1 · 2 · 3 · . . . · n.

Show that ifp is prime, then(p− 1)! ≡ −1(mod p). (Hint: (p− 1)! is the product of all the units
in Zp).

Answer: Consider the units1, 2, . . . , p− 1 in Zp. Since the equationx2 = 1 has at most two roots,
there are at most two elements which are their own inverse: these elements are1 and−1. The set
of remaining units can be divided into pairs of numbers that are mutually inverse. Now consider
the product of all units. The mutually inverse pairs cancel out to 1, so the product of all units is
equal to1 · −1 = −1.

Problem 5. My RSA public key is given by(N, e) = (55, 27).

(a) What is my secret decryption keyd?

Answer: We haveN = pq = 5 · 11. The encryption and decryption keys satisfy the relation
ed ≡ 1(modϕ(N)), whereϕ(N) = (p − 1)(q − 1) = 4 · 10 = 40. Thus27d ≡ 1(mod 40). We
use Euclid’s algorithm to solve this, and we find

40 = 1 · 27 + 13
27 = 2 · 13 + 1

Thus,1 = 27− 2 · 13 = 27− 2 · (40− 27) = 3 · 27− 2 · 40. It follows that27 · 3 ≡ 1(mod 40),
thusd = 3.

(b) Decrypt the message[1; 4; 10].

Answer: We must compute13, 43, and113 (mod 55). Clearly13 = 1, and43 = 64 ≡ 9(mod 55).
Also, 103 = 1000 ≡ 10(mod 55). So the decrypted message is[1; 9; 10].

Problem 6. Find all integersx which satisfy the following two equations simultaneously:

x2 ≡ 4(mod 7)
x3 ≡ x(mod 5)

Justify your answer.

Answer: The first equation is equivalent tox2 − 4 ≡ 0(mod 7), or (x + 2)(x − 2) ≡ 0(mod 7),
thereforex ≡ ±2(mod 7). The second equation is equivalent tox3 − x ≡ 0(mod 5), hence
x(x2− 1) ≡ 0(mod 5), hencex(x+ 1)(x− 1) ≡ 0(mod 5), hencex ∈ {0,−1, 1}(mod 5). By the
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Chinese Remainder Theorem, each combination gives exactly one solution inZ35, hence there is a
total of 6 solutions:

x ≡ 2(mod 7), x ≡ 0(mod 5) ⇐⇒ x ≡ −5(mod 35)
x ≡ 2(mod 7), x ≡ 1(mod 5) ⇐⇒ x ≡ 16(mod 35)
x ≡ 2(mod 7), x ≡ −1(mod 5) ⇐⇒ x ≡ 9(mod 35)
x ≡ −2(mod 7), x ≡ 0(mod 5) ⇐⇒ x ≡ 5(mod 35)
x ≡ −2(mod 7), x ≡ −1(mod 5) ⇐⇒ x ≡ −16(mod 35)
x ≡ −2(mod 7), x ≡ 1(mod 5) ⇐⇒ x ≡ −9(mod 35)

Thus, the general solution set is{−16,−9,−5, 5, 9, 16}+ 35Z.

Problem 7. Which of the following polynomials are irreducible inQ[x]? Give reasons.

(a) x5 + x3 + x2 + 1.

Answer: Not irreducible, becausex5 + x3 + x2 + 1 = (x3 + 1)(x2 + 1). Also, because−1
is a root.

(b) x4 + 2x2 + 4x− 6.

Answer: Irreducible by Eisenstein’s criterion withp = 2. Note thatp = 2 divides all
coefficients but the highest one, andp2 = 4 does not divide the lowest coefficient (−6).

(c) x3 + x2 − 7.

Answer: Irreducible. By the rational root theorem, the only possible rational roots for
this polynomial are±1,±7. It is quickly checked that these are not in fact roots. Hence,
x3 + x2 − 7 has no linear factors inQ[x], and therefore it must be irreducible.

(d) x5 + 12x4 + 18x3 + 30x+ 12.

Answer: Irreducible by Eisenstein’s criterion withp = 3. Note that Eisenstein’s criterion
with p = 2 doesnot apply, because22 = 4 divides the lowest coefficient,a0 = 12.

Problem 8. Consider the polynomial(8, 4)-code with generating polynomialp(x) = x4 + x3 +
x2 + 1.

(a) Find the generating matrix for this code (make sure that your generating matrix generates a
systematiccode).

Answer: We need to find the codewords corresponding to the four basis plaintext words(1, 0, 0, 0),
(0, 1, 0, 0), and so forth. Thus, we need to represent each plaintext as a polynomial, multiply by
x4, and add the remainder of the division byp(x). We get:

(1000)→ x3 → x7 = (x4 + x3 + x2 + 1)(x3 + x2 + 1) + 1 → (10000001)
(0100)→ x2 → x6 = (x4 + x3 + x2 + 1)(x2 + x) + x3 + x2 + x → (01001110)
(0010)→ x1 → x5 = (x4 + x3 + x2 + 1)(x+ 1) + x2 + x+ 1 → (00100111)
(0001)→ x0 → x4 = (x4 + x3 + x2 + 1)(1) + x3 + x2 + 1 → (00011101)
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Thus, the generator matrix is

G =


1 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 1 1 1 0 1


(b) Fori = 1, . . . , 8, let ri(x) be the remainder of the division ofx8−i by p(x). LetH be the matrix
whoseith row isri(x), represented as a vector inZ4

2. FindH, and prove that it is a parity check
matrix for the code from (a).

Answer: The respective remainders are:r1(x) = 1, r2(x) = x3 + x2 + x, r3(x) = x2 + x + 1,
r4(x) = x3 + x2 + 1 (these were calculated in part (a)), andr5(x) = x3, r6(x) = x2, r7(x) = x,
r8(x) = 1. These remainders are simply the syndromes for each possible single-bit error, and thus
they form the rows of a parity check matrix. We get

H =



0 0 0 1
1 1 1 0
0 1 1 1
1 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

(c) What is the minimum Hamming weight of this code? Thus how many errors does it cor-
rect/detect?

Answer: It is easy to see that each codeword has even weight. Moreover, there is a codeword of
weight 2, so the minimum Hamming weight is 2. The code detects 1 errors and corrects 0.

Problem 9. Consider the linear code with generator matrix

G =

 1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

 .

Find the coset of the received word(0, 0, 1, 0, 1). What is the coset leader? What is therefore the
most likely corrected codeword?

Answer: Letw = (00101). The coset is

{vG+ w|v ∈ R3} = {00101, 10110, 01100, 11110, 00011, 10000, 01010, 11000}.

The natural coset leader is(10000), since it has the smallest Hamming weight (and thus is the
most likely error, assuming that errors occur independently in each bit). Therefore, the most likely
corrected codeword is(00101) + (10000) = (10101) = (101)G.
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Problem 10. Find the greatest common divisor ofx4 +x3 +2x2 +x+1 andx4 +2x3 +3x2 +2x+2
in R[x].

Answer: We use Euclid’s algorithm.

(x4 + 2x3 + 3x2 + 2x+ 2) = (x4 + x3 + 2x2 + x+ 1)(1) + (x3 + x2 + x+ 1)
(x4 + x3 + 2x2 + x+ 1) = (x3 + x2 + x+ 1)(x) + (x2 + 1)
(x3 + x2 + x+ 1) = (x2 + 1)(x+ 1) + 0

Therefore, the greatest common divisor isx2 + 1.

Problem 11. Consider the Galois FieldGF(9), and letα be an element withα2 + 2α + 2 = 0.

(a) Isα a primitive element?

Answer: We first make a representation of the Galois FieldGF(9).

α0 = 1 01
α1 = α 10
α2 = α + 1 11
α3 = 2α + 1 21
α4 = 2 02
α5 = 2α 20
α6 = 2α + 2 22
α7 = α + 2 12
α8 = 1 01

We find thatα is indeed a primitive element.

(b) Find all primitive elements inGF(9).

Answer: Sinceα is primitive and of order 8, it follows that the primitive elements are of the form
αi, where gcd(i, 8) = 1, soα3, α5, andα7.

(c) Find an irreducible polynomial which hasα + 1 as a root.

Answer: Let x = α + 1 = α2. Thenx0 = 1, x1 = α2 = α + 1, x2 = α4 = 2. We get a linear
dependency, namelyx2 + 1 = 0. Sox2 + 1 hasα + 1 as a root. Since it is the smallest degree
polynomial with this property, it is irreducible.

Problem 12. Find the generator polynomial of a 4-error correcting(31, k) BCH code. Note that a
representation ofGF(32) can be found on the attached sheet (page 6). What is the plaintext length
k of this code?

Answer: First, we find irreducible polynomialspi(x) for pi(αi) = 0, for i = 1, 3, 5, 7. We have
p1(x) = x5 + x2 + 1. Forp3(x), letx = α3, and calculatexn for variousn:

x0 = α0 = 1 (00001)
x1 = α3 (01000)
x2 = α6 = α3 + α (01010)
x3 = α9 = α4 + α3 + α (11010)
x4 = α12 = α3 + α2 + α (01110)
x5 = α15 = α4 + α3 + α2 + α + 1 (11111)
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We find a linear dependency between these 6 vectors:x5 + x4 + x3 + x2 + 1 = 0 hasα3 as a root.
Sincex0, . . . , x4 are linearly independent, no smaller-degree polynomial hasα3 as a root, and thus
p3(x) = x5 + x4 + x3 + x2 + 1 is irreducible.

Forp5(x), letx = α5, and calculate:

x0 = α0 = 1 (00001)
x1 = α5 (00101)
x2 = α10 (10001)
x3 = α15 (11111)
x4 = α20 (01100)
x5 = α25 (11001)

We find a linear dependency between these 6 vectors, which isp5(x) = x5 + x4 + x2 + x+ 1.

Forp7(x), letx = α7, and calculate:

x0 = α0 = 1 (00001)
x1 = α7 (10100)
x2 = α14 (11101)
x3 = α21 (11000)
x4 = α28 (10110)
x5 = α35 (10000)

We find a linear dependency between these 6 vectors, which isp7(x) = x5 + x3 + x2 + x+ 1.

Therefore, the generator polynomial is

p(x) = gcd(p1(x), p3(x), p5(x), p7(x))
= (x5 + x2 + 1)(x5 + x4 + x3 + x2 + 1)(x5 + x4 + x2 + x+ 1)(x5 + x3 + x2 + x+ 1).

which is of degree 20, thus the plaintext length is 11.

Attachment: Representation ofGF (32) with α5 = α2 + 1

α0 =1 00001
α1 =α 00010
α2 =α2 00100
α3 =α3 01000
α4 =α4 10000
α5 =α2 + 1 00101
α6 =α3 + α 01010
α7 =α4 + α2 10100
α8 =α3 + α2 + 1 01101
α9 =α4 + α3 + α 11010
α10=α4 + 1 10001
α11=α2 + α + 1 00111
α12=α3 + α2 + α 01110
α13=α4 + α3 + α2 11100
α14=α4 + α3 + α2 + 1 11101
α15=α4 + α3 + α2 + α + 1 11111

α16=α4 + α3 + α + 1 11011
α17=α4 + α + 1 10011
α18=α + 1 00011
α19=α2 + α 00110
α20=α3 + α2 01100
α21=α4 + α3 11000
α22=α4 + α2 + 1 10101
α23=α3 + α2 + α + 1 01111
α24=α4 + α3 + α2 + α 11110
α25=α4 + α3 + 1 11001
α26=α4 + α2 + α + 1 10111
α27=α3 + α + 1 01011
α28=α4 + α2 + α 10110
α29=α3 + 1 01001
α30=α4 + α 10010
α31=1 00001
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