MAT 3343, APPLIED ALGEBRA, FALL 2003
Answers to the Final Exam

Problem 1. Supposel andk are integers such thdt> 0, d|(11k +4), andd|(10k + 3). Show that
d=1lord=T.

Answer: Under the given hypotheses, we know thgi0(11% + 4) + (—11)(10k + 3).. Therefore
d|110k + 40 — 110k — 33, henced|7. SinceT is prime, we have = 1 ord = 7.
Problem 2. (a) Show that no integer of the forkt + 1 is a multiple of7.

Answer: The equatiorv|(k? + 1) is equivalent tdk? + 1 = 0(mod 7), or k> = —1(mod 7). The
squares irZ; are(0*> = 0, 12 = (—-1)2 = 1, 2% = (-2)? = 4, 3% = (-3)? = 9 = 2. Hence no
square iz, is equal to—1.

(b) Find all integers: such that? + 1 is a multiple of13.

Answer: As in part (a), this is equivalent to finding @llsuch that? = —1(mod 13). We examine
allsquaresitZ;3: 0° = 0,12 = (—1)2=1,22 = (-2)? =4,3* = (-3)?=9,4 = (—4)* =16 =

3,52 = (—5)? = 25 = —1. We may stop here, as we have found two solutiors +5, andZs is

a field and therefore a quadratic equation has no more than 2 solutions. Thus, the general solution
is k = £5(mod 13). This means, the general integer solutiok is {5 + 13a, —5+ 13a | a € Z},
orke{...,—8—55,8,1821,...}.

Problem 3. Consider the following set of real x 2-matrices:

n{(%, ") ases).

(a) Show thatR is a commutative ring, with the usual operations of addition and multiplication of
matrices. (You may assume common properties of matrices without proof).

Answer: We already know that the set of alk 2-matrices forms a (non-commutative) ring. Thus,
it suffices to check thak is a subring, and that is commutative. To check that it is a subring, we
must check that it contairtsand1, and is closed under addition, multiplication, and negation. We

note thatl) € R andl € R. Further, ifA = ( Cib Z ) andB = ( C_d g ),then

A+B:<a—l—c b+d) R

—(b+d) a+c

—A:<b_a :2)63

([ ac—=0bd ad + be
AB = ( —(ad + be) ac—bd) € R

Finally we check commutativity:

[ ac—0bd ad+bc \
BA_(—(ad+bc) ac—bd)_AB'
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(b) Is R a field? Prove or give a counterexample.

Answer: Each matrix inR has determinani? + 52, and thus it is invertible unless= b = 0. It
remains to check that the inverse is indee®irBut we have

a b\ 1 a —b
—b a a2+ \b oa ’

hence, the inverse is iR (if (a,b) # (0,0)). Thus,R is a field. (Note:R is indeed isomorphic to

the field of complex numberS, via the isomorphism + bi — ( Cib z )).

Problem 4. Recall that the factorial of is definedas! =1-2-3-...-n.

Show that ifp is prime, thenp — 1)! = —1(mod p). (Hint: (p — 1)! is the product of all the units
inZ,).

Answer: Consider the unit$, 2, ...,p—1in Z,. Since the equation’ = 1 has at most two roots,
there are at most two elements which are their own inverse: these elemeh@mare 1. The set

of remaining units can be divided into pairs of numbers that are mutually inverse. Now consider
the product of all units. The mutually inverse pairs cancel out to 1, so the product of all units is
equaltol - —1 = —1.

Problem 5. My RSA public key is given by N, e) = (55, 27).
(a) What is my secret decryption ké§

Answer: We haveN = pq = 5 - 11. The encryption and decryption keys satisfy the relation
ed = 1(mod ¢(N)), wherep(N) = (p —1)(¢ — 1) = 4 - 10 = 40. Thus27d = 1(mod 40). We
use Euclid’s algorithm to solve this, and we find

40 = 1-27 + 13
27T = 2-13 + 1

Thus,1 =27—-2-13=27—2-(40 — 27) = 3- 27 — 2 - 40. It follows that27 - 3 = 1(mod 40),
thusd = 3.

(b) Decrypt the messadg; 4; 10].

Answer: We must computé?, 43, and11? (mod 55). Clearly1® = 1, and4® = 64 = 9(mod 55).
Also, 10® = 1000 = 10(mod 55). So the decrypted messagélis9; 10].

Problem 6. Find all integerse which satisfy the following two equations simultaneously:

2? = 4(mod 7)
3 = z(mod 5)

T

Justify your answer.

Answer: The first equation is equivalent i — 4 = 0(mod 7), or (z + 2)(z — 2) = 0(mod 7),
thereforex = +2(mod 7). The second equation is equivalentatd — z = 0(mod 5), hence
z(x? — 1) = 0(mod 5), hencer(z + 1)(z — 1) = 0(mod 5), hencer € {0, —1,1}(mod 5). By the



Chinese Remainder Theorem, each combination gives exactly one solufigy) mence there is a
total of 6 solutions:

r=2(mod7), x=0(modb) <<=z =—5(mod35)
r=2(mod7), x=1(modb5) <= z = 16(mod35)
r=2(mod7), x=-1(modb) <= z=9(mod35)
r=-2(mod7), x=0(mod5) <= z=>5(mod35)
r=-2(mod7), z=-1(modb) <= x=—16(mod 35)
r=-2(mod7), z=1(mod5) <= z=-9(mod35H)

Thus, the general solution setfis- 16, —9, —5,5,9, 16} + 35Z.

Problem 7. Which of the following polynomials are irreducible @[z|? Give reasons.

(@) 2° + 23 + 22 + 1.

Answer: Not irreducible, because® + 23 + 22 + 1 = (2% + 1)(2% + 1). Also, because-1
iS a root.

(b) z* + 22% + 42 — 6.
Answer: Irreducible by Eisenstein’s criterion with = 2. Note thatp = 2 divides all
coefficients but the highest one, aprd= 4 does not divide the lowest coefficient§).

(€) x3 + 2% —T.

Answer: Irreducible. By the rational root theorem, the only possible rational roots for
this polynomial aret1, £7. It is quickly checked that these are not in fact roots. Hence,
z3 + 22 — 7 has no linear factors i[z], and therefore it must be irreducible.

(d) 2° + 122* + 1823 + 30z + 12.
Answer: Irreducible by Eisenstein’s criterion with = 3. Note that Eisenstein’s criterion
with p = 2 doesnot apply becaus&? = 4 divides the lowest coefficient, = 12.

Problem 8. Consider the polynomigl, 4)-code with generating polynomialz) = z* + 23 +

%+ 1.

(a) Find the generating matrix for this code (make sure that your generating matrix generates a
systematicode).

Answer: We need to find the codewords corresponding to the four basis plaintext (ofds, 0),
(0,1,0,0), and so forth. Thus, we need to represent each plaintext as a polynomial, multiply by
z*, and add the remainder of the division ). We get:

(1000) — 2% — 27 = (21 + 2% + 22 + 1)(2® + 2 +1)+1 . (10000001)
(0100) —» 2? = 2® = (a* +2® + 22 + 1)(2* + 2) + 2* + 2 + 2 — (01001110)
(0010) —» 2! - 2° = (2 + 23 + 22 + 1) (2 +1)+:c +z+1  —(00100111)
(0001) = 2° - 2* = (2 + 23 + 22+ 1)(1) + 23 + 2% + 1 — (00011101)



Thus, the generator matrix is

oS O O
o O = O
o= O O
—_ o O O
—_ o = O
e i )
SO = = O
— = O =

(b) Fori =1,...,8, letr;(x) be the remainder of the division of * by p(x). Let H be the matrix
whoseith row isr;(z), represented as a vectorZ. Find H, and prove that it is a parity check
matrix for the code from (a).

Answer: The respective remainders arg(z) = 1, ro(z) = 2° + 2*> + x, r3(x) = 2 + v + 1,

rq(r) = 2® + 22 4+ 1 (these were calculated in part (a)), andr) = 23, r¢(z) = 22, r7(z) = =,

rs(z) = 1. These remainders are simply the syndromes for each possible single-bit error, and thus
they form the rows of a parity check matrix. We get

0001
1110
0111
1 101
H= 1 000
0100
0010
0 001

(c) What is the minimum Hamming weight of this code? Thus how many errors does it cor-
rect/detect?

Answer: It is easy to see that each codeword has even weight. Moreover, there is a codeword of
weight 2, so the minimum Hamming weight is 2. The code detects 1 errors and corrects O.

Problem 9. Consider the linear code with generator matrix

G:

oS O =
O = O
_ o O

11
01
10

Find the coset of the received wof@d, 0, 1,0, 1). What is the coset leader? What is therefore the
most likely corrected codeword?

Answer: Letw = (00101). The coset is
{vG + wlv € R*} = {00101, 10110,01100, 11110, 00011, 10000, 01010, 11000}

The natural coset leader {30000), since it has the smallest Hamming weight (and thus is the
most likely error, assuming that errors occur independently in each bit). Therefore, the most likely
corrected codeword i©0101) + (10000) = (10101) = (101)G.



Problem 10. Find the greatest common divisorof+ 23 +22% + 2+ 1 andz* + 22 + 322 + 22 +2
inR[x].

Answer: We use Euclid’s algorithm.

(2t + 223 + 322+ 22 +2) = (@' +23+22%+2+1)(1) + (P +22+2+1)
(' 4+ 23+ 222 +x+1) = (BP+2>+z+1)(2) + (22 +1)
(23 4+ 22+ 2 +1) = (@®*+1D(z+1) + 0

Therefore, the greatest common divisortst- 1.

Problem 11. Consider the Galois Fiel@F(9), and leta be an element with? + 2o + 2 = 0.
(a) Isa a primitive element?

Answer: We first make a representation of the Galois Figlgl(9).

o’ =1 01
al = « 10
o> = a+1 |11
a? = 2a+1]21
at = 2 02
a® = 2o 20
b = 2a+21(22
" = a+2 |12
a® =1 01

We find thato is indeed a primitive element.
(b) Find all primitive elements iGF(9).

Answer: Sinceqa is primitive and of order 8, it follows that the primitive elements are of the form
o', where gedi, 8) = 1, soa?, o®, anda’”.

(c) Find an irreducible polynomial which has+ 1 as a root.
Answer: Letz = a+1 = a? Thena’ = 1, 2! = a? = a + 1,22 = o* = 2. We get a linear

dependency, namely’ + 1 = 0. Sox? + 1 hasa + 1 as a root. Since it is the smallest degree
polynomial with this property, it is irreducible.

Problem 12. Find the generator polynomial of a 4-error correctifig, k) BCH code. Note that a
representation afF(32) can be found on the attached sheet (page 6). What is the plaintext length
k of this code?

Answer: First, we find irreducible polynomialg;(z) for p;(a’) = 0, fori = 1,3,5,7. We have
p1(x) = 2° + 2% + 1. Forpsz(z), letz = o3, and calculate™ for variousn:

=a’=1 (00001)
!l =ab (01000)
?=a=a+a (01010)
B=a’=a'+*+a (11010)
t=a?=a)+a’+a (01110)
=ab =+ +a’+a+1 (11111)
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We find a linear dependency between these 6 vecirs:z* + 2® + 2% + 1 = 0 hasa?® as a root.
Sincex?, ..., z* are linearly independent, no smaller-degree polynomiabAass a root, and thus
p3(z) = 2° + 2* + 2 + 2* + 1is irreducible.

Forps(x), letz = o®, and calculate:

O =a=1 (00001)
rt=ab (00101)
r? = al? (10001)
3 = al® (11111)
rt=a® (01100)
5 =a? (11001)

We find a linear dependency between these 6 vectors, whjgliai$ = 25 + 2% + 22 + = + 1.
For p;(z), letz = 7, and calculate:

P =a%=1 (00001)
rl=a’ (10100)
z? = ot (11101)
23 =a?! (11000)
zt = a® (10110)
25 = (10000)

We find a linear dependency between these 6 vectors, whjgliai$ = 2° + 23 + 22 + = + 1.
Therefore, the generator polynomial is

p(z) = gedpi(z), ps(x), ps(z), pr())
= @+22+ )P+t + 3+ 22+ D)@+t 2+ e+ D)@+ + 2+ + 1),

which is of degree 20, thus the plaintext length is 11.

Attachment: Representation of G F'(32) with a® = o? + 1

a® =1 00001 | |af=a*+a®+a+1 |[11011
al =a 00010 | |a'"=a* +a+1 10011
a? =a? 00100 a=a +1 00011
o’ =a? 01000 | | a¥=a? + « 00110
at =t 10000 a®=a3 + a? 01100
a® =a?+1 00101 | | o*'=at+ a3 11000
a® =a® + « 01010 | | a®*=a* +a?+1 10101
o’ =a* 4+ a? 10100 | | o®P=a®+a?+a+1 |01111
o =ad+a®+1 01101 o=t +a®+a?+a | 11110
o’ =a*+ad+a 11010 aP=a*+a+1 11001
alP'=at +1 10001 a=a*+a®+a+1 |10111
al=a? +a+1 00111 | |a¥"=a®+a+1 01011
at?=a® + o + o 01110 | | a®=a*+a?® + 10110
a?=ao* + a3 + o? 11100 | | a®=a3+1 01001
a=at+ad+a?+1 11101 a=a* + o 10010
aP=ct+a*+a’>+a+1|11111 a?l=1 00001




