MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC, Fall 2004 Answers to the Midterm

Problem 1. Prove the following in natural deduction, using your choice of Fitch or Prawitz style:

(a)
$$(A \to B) \to C \vdash A \lor C$$
.

Answer:

Answer:

Problem 2. Prove the following proposition using analytic tableaux:

(a)
$$(A \lor B) \to C \vdash (A \to C) \land (B \to C).$$

Answer: $T(A \lor B \to C)$ $F((A \to C) \land (B \to C))$ $F(A \lor B)$ TCFA $F(A \to C) \quad F(B \to C)$ FBFC FC $F(A \to C) \quad F(B \to C)$ × \times TBTA× X

(b) $B \land C \to A$, $(\neg A) \to C \vdash (C \to B) \to A$. Answer:

Problem 3. Let us write $v(\varphi)$ for the number of occurrences of propositional variables in a proposition φ . Let us write $c(\varphi)$ for the number of occurrences of connectives in φ .

Examples:

 $v(((p_2 \land p_5) \rightarrow (\bot \land p_2))) = 3$, because there are 3 variable occurrences p_2, p_5, p_2 .

 $c(((p_2 \land p_5) \rightarrow (\bot \land p_2))) = 4$, because there are 4 occurrences of connectives $\land, \rightarrow, \bot, \land$.

(a) Give recursive definitions of $v(\varphi)$ and $c(\varphi)$.

Answer:

$$v(p_i) = 1$$

$$v(\bot) = 0$$

$$v((\varphi \Box \psi)) = v(\varphi) + v(\psi)$$

$$v((\neg \varphi)) = v(\varphi)$$

$$c(p_i) = 0$$

$$c(\bot) = 1$$

$$c((\varphi \Box \psi)) = c(\varphi) + c(\psi) + 1$$

$$c((\neg \varphi)) = c(\varphi) + 1$$

(b) Prove: for all φ , $v(\varphi) \leq c(\varphi) + 1$.

Answer: Base case: $v(p_i) = 1 \le 0 + 1 = c(p_i) + 1$, and $v(\perp) = 0 \le 1 + 1 = c(\perp) + 1$.

Induction step: let $\varphi = (\psi \Box \theta)$. By induction hypothesis, $v(\psi) \leq c(\psi) + 1$ and $v(\theta) \leq c(\theta) + 1$. We want to show $v(\varphi) \leq c(\varphi) + 1$. But:

$$\begin{array}{rcl} v(\varphi) &=& v(\psi \Box \,\theta) \\ &=& v(\psi) + v(\theta) \\ &\leqslant& c(\psi) + 1 + c(\theta) + 1 \text{ by ind.hyp.} \\ &=& c(\psi \Box \,\theta) + 1 \\ &=& c(\varphi) + 1 \end{array}$$

Second induction step: let $\varphi = (\neg \psi)$. By induction hypothesis, $v(\psi) \leq c(\psi) + 1$. We want to show $v(\varphi) \leq c(\varphi) + 1$. But:

$$v(\varphi) = v(\neg \psi)$$

= $v(\psi)$
 $\leqslant c(\psi) + 1$ by ind.hyp
= $c(\neg \psi)$
 $\leqslant c(\varphi)$
 $\leqslant c(\varphi) + 1$

Problem 4. Suppose $\vdash A \rightarrow B$ and $\not\vdash B$. Prove: the set $\{\neg A, \neg B\}$ is consistent.

Answer: There are many possible proofs. Here are two examples. Note that proof 1 uses soundness and completeness, whereas proof 2 does not.

Proof 1: Using soundness, we have $\models A \rightarrow B$ and $\not\models B$. Because $\not\models B$, it follows that there exists some valuation $[\![-]\!]_0$ such that $[\![B]\!]_0 = 0$. But by $\models A \rightarrow B$, it follows that for all valuations, $[\![-]\!], [\![B]\!] = 0$ implies $[\![A]\!] = 0$. So in particular, $[\![A]\!]_0 = 0$. So then, $[\![\neg B]\!]_0 = 1$ and $[\![\neg A]\!]_0 = 1$, so we have found a valuation which satisfies $\{\neg A, \neg B\}$. It follows, by completeness, that $\{\neg A, \neg B\}$ is consistent.

Proof 2: Suppose $\vdash A \rightarrow B$ and $\not\vdash B$. Also, suppose, for the sake of contradication, that $\{\neg A, \neg B\}$ is not consistent. By definition, this means that $\neg A, \neg B \vdash \bot$. We then have the following natural deduction proofs:

$$\frac{\vdots}{A \to B} \qquad \qquad \frac{\neg A}{\vdots} \quad \frac{\neg B}{\vdots}$$

We can therefore construct the following natural deduction proof:

We therefore have $\vdash B$, contradicting our assumption.

Problem 5. Let Γ be a set of propositions such that for all propositional variables p_n , either $\Gamma \models p_n$ or $\Gamma \models \neg p_n$. Prove by induction: for all propositions φ , either $\Gamma \models \varphi$ or $\Gamma \models \neg \varphi$.

Note: To keep the problem short, do <u>only</u> the cases $\{atoms, \neg, \land\}$. *Make sure you state the induction hypothesis clearly in each case.*

Answer: Base case: if $\varphi = p_n$, then the claim is true by assumption.

Induction step (¬): suppose $\varphi = \neg \psi$, and suppose that $\Gamma \models \psi$ or $\Gamma \models \neg \psi$ (induction hypothesis). We want to show $\Gamma \models \varphi$ or $\Gamma \models \neg \varphi$. Case 1: if $\Gamma \models \psi$, then $\Gamma \models \neg \neg \psi$ (because for any valuation, $[\neg \neg \psi] = [\psi]$. Therefore $\Gamma \models \neg \varphi$. Case 2: if $\Gamma \models \neg \psi$, then $\Gamma \models \varphi$, because $\varphi = \neg \psi$.

Induction step (\wedge): suppose $\varphi = \psi \wedge \rho$, and suppose that ($\Gamma \models \psi$ or $\Gamma \models \neg \psi$) and ($\Gamma \models \rho$ or $\Gamma \models \neg \rho$) (induction hypothesis). We want to show $\Gamma \models \varphi$ or $\Gamma \models \neg \varphi$. Case 1: if $\Gamma \models \psi$ and $\Gamma \models \rho$, then $\Gamma \models \psi \wedge \rho$, hence $\Gamma \models \varphi$. Case 2: if $\Gamma \models \neg \psi$, then $\Gamma \models \neg(\psi \wedge \rho)$, because $\neg \psi$ logically implies $\neg(\psi \wedge \rho)$. Therefore, $\Gamma \models \neg \varphi$. Case 3: if $\Gamma \models \neg \rho$, then $\Gamma \models \neg(\psi \wedge \rho)$, because $\neg \rho$ logically implies $\neg(\psi \wedge \rho)$. Therefore, $\Gamma \models \neg \varphi$. Since at least one of the three cases must hold, we are done.

Problem 6. In this problem, we consider a version of Hintikka sets for unsigned propositions. For simplicity, we consider a propositional logic using only the connectives $\{\neg, \land\}$. Thus, we do not consider the connectives $\{\lor, \rightarrow, \leftrightarrow, \bot\}$

Let S be a set of unsigned propositions. S is called a *Hintikka set* if it satisfies:

1. for no propositional symbol p, both $p \in S$ and $(\neg p) \in S$,

2. if
$$(\varphi \land \psi) \in S$$
, then $\varphi \in S$ and $\psi \in S$,

3. if $(\neg(\varphi \land \psi)) \in S$, then $(\neg \varphi) \in S$ or $(\neg \psi) \in S$,

4. if $(\neg(\neg \varphi)) \in S$, then $\varphi \in S$.

(a) Prove: Every Hintikka set is satisfiable.

Hint: first, define a suitable valuation [-]*. Then, prove the following statement by induction: for all propositions* φ *,* ($\varphi \in S \Rightarrow [\![\varphi]\!] = 1$) and ($(\neg \varphi) \in S \Rightarrow [\![\varphi]\!] = 0$).

Answer: Let *S* be a Hintikka set. Define a valuation [-] by:

$$\llbracket p_i \rrbracket = \begin{cases} 1 & \text{if } p_i \in S \\ 0 & \text{if } p_i \notin S \end{cases}$$

and extend $\llbracket - \rrbracket$ to composite formulas in the unique way:

$$\begin{bmatrix} \neg \psi \end{bmatrix} = 1 - \llbracket \psi \end{bmatrix}, \\ \begin{bmatrix} \psi \land \rho \end{bmatrix} = \min \{ \llbracket \psi \end{bmatrix}, \llbracket \rho \end{bmatrix}_{}$$

We claim that for all propositions $\varphi, \varphi \in S \Rightarrow \llbracket \varphi \rrbracket = 1$ and $(\neg \varphi) \in S \Rightarrow \llbracket \varphi \rrbracket = 0$. We prove this by induction on φ .

Base case: if $\varphi = p_i$ is atomic, then $p_i \in S \Rightarrow [\![p_i]\!] = 1$ by definition. Also, assume $\neg p_i \in S$, then $p_i \notin S$ by clause (1) in the definition of a Hintikka set, so $[\![p_i]\!] = 0$ by definition.

Induction step (\wedge): Assume $\varphi = \psi \wedge \rho$, and assume the induction hypothesis holds for ψ and ρ . If $\varphi \in S$, then by clause (2) in the definition of a Hintikka set, $\psi \in S$ and $\rho \in S$. By I.H., $\llbracket \psi \rrbracket = 1$ and $\llbracket \rho \rrbracket = 1$, hence $\llbracket \varphi \rrbracket = \llbracket \psi \wedge \rho \rrbracket = 1$. If $\neg \varphi \in S$, then by clause (3) in the definition of a Hintikka set, $\neg \psi \in S$ or $\neg \rho \in S$. Without loss of generality, assume $\neg \psi \in S$. Then by I.H., $\llbracket \psi \rrbracket = 0$, hence $\llbracket \varphi \rrbracket = \llbracket \psi \wedge \rho \rrbracket = 0$.

Induction step (¬): Assume $\varphi = \neg \psi$, and assume the induction hypothesis holds for ψ . If $\varphi \in S$, then $\neg \psi \in S$, hence $\llbracket \psi \rrbracket = 0$ by I.H., hence $\llbracket \varphi \rrbracket = 1$. If $\neg \varphi \in S$, then $\neg \neg \psi \in S$, and

by clause (4) in the definition of a Hintikka set, $\psi \in S$, hence by I.H., $\llbracket \psi \rrbracket = 1$, hence $\llbracket \neg \varphi \rrbracket = 1$.

It follows that $\llbracket - \rrbracket$ satisfies all $\varphi \in S$, so S is satisfiable. \Box

(b) [Extra credit] Prove: Every maximally consistent set is a Hintikka set.

Answer: Let S be a maximally consistent set of formulas. From a theorem in class, we know that every maximally consistent set satisfies $\varphi \in S \iff \neg \varphi \notin S$, for all φ . We prove that S is a Hintikka set:

(1) Since S is consistent, we cannot have $p \in S$ and $\neg p \in S$, or else $S \vdash \bot$.

(2) Assume $\varphi \land \psi \in S$. Suppose $\varphi \notin S$. Then $\neg \varphi \in S$ by maximality. But $\varphi \land \psi, \neg \varphi \vdash \bot$, so S is inconsistent, a contradiction. Therefore $\varphi \in S$.

(3) Assume $\neg(\varphi \land \psi) \in S$. Suppose $\neg \varphi \notin S$ and $\neg \psi \notin S$. By maximal consistency, $\varphi \in S$ and $\psi \in S$. But $\neg(\varphi \land \psi), \varphi, \psi \vdash \bot$, so *S* is inconsistent, a contradiction. Therefore $\neg \varphi \in S$ or $\neg \psi \in S$.

(4) Assume $\neg \neg \varphi \in S$. By maximal consistency, $\neg \varphi \notin S$, and therefore $\varphi \in S$. We have shown that S satisfies all 4 conditions of a Hintikka set.