MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC,

Problem 1. Prove the following in natural deduction, using your
choice of Fitch or Prawitz style:

(@)

(b)
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Answersto the Midterm

(A-B)—-C F AvC.
Answer:

1 (A—B)—C

2 —(AV(C)

3 A

4 TVC' VI, 3

5) 1 -E, 2,4

6 B 1E,5

7 A— B =1, 3-6

8 C =E, 1,7

9 AvC VI, 8

10 1 -E, 2,9

11 | ==(AVC) -1, 2-10

12 |AvC -—E, 11

AVB F (=B)—(C—A).

Answer:
1 AV B
2 - B
3 C
4 ) A
) 7 R, 4
6 B
7 T -E, 2,6
8 A 1E, 7
9 A VE, 1, 4-5, 6-8
10 C— A =1, 3-9
11 | A B—(C—A) =1, 2-10

Problem 2. Prove the following proposition using analytic tableaux:

@ (AvB)—-C F (A-O)N(B-—=Q0).

Answer:
T(AvVB—C)
F(A—-C)N(B—(0))
F(AV B) TC
FA /\
FB F(A—C) F(B—C)
T~ FC FC
F(A—C) F(B- )
TA TB X X
X X



b)) BAC—A (A -—-C + (C—B)—A

Answer:
T(BAC — A)
T(ﬁ A— C)
F((C — B)— A)
T(C — B)
FA
SO
F(BAC) TA
/\
FB FC x
TTT— S
FC TB F(=A) TC
T TA
F(=A) 1C * %
TA X

Problem 3. Let us write v(y) for the number of occurrences of
propositional variables in a proposition . Let us write ¢(y) for
the number of occurrences of connectives in ¢.

Examples:

v(((p2 Aps) — (L Apy))) = 3, because there are 3 variable
OCCUITeNCes po, ps, Pa.

c(((pa Aps) — (L Apsy))) =4, because there are 4 occurrences
of connectives A, —, 1, A.

(a) Give recursive definitions of v(y) and c(y).

Answer:
v(ps) =1
v(l) =0
v((pOv)) = vip)+o(¥)
(=) = vip)
c(ps) =0
c(Ll) =1
c((p0v)) = clp)+c(¥)+1
c((=¢) = cp)+1

(b) Prove: forall ¢, v(y) < c(p) + 1.

Answer: Base case: v(p;)) =1 < 0+ 1 = ¢(p;) + 1, and
v(L)=0<1+1=¢c(l)+1

Induction step: let ¢ = (¢» O #). By induction hypothesis,
v(v) < c¢(v) + 1 and v(f) < ¢(d) + 1. We want to show

v(p) < c(p) + 1. But:

v(p) = v(wD0o)

v(¥) +0(0)
c(¢) + 1+ c(f) + 1 by ind.hyp.
c(pd0)+1
c(p) +1
Second induction step: let ¢ = (—%). By induction hypoth-
esis, v(v) < () + 1. We want to show v(p) < c(p) + 1.
But:
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Problem 4. Suppose - A — Bandt/ B. Prove: theset{— A, - B}
IS consistent.

Answer: There are many possible proofs. Here are two examples.
Note that proof 1 uses soundness and completeness, whereas proof
2 does not.

Proof 1: Using soundness, we have = A — B and [~ B. Be-
cause [~ B, it follows that there exists some valuation [—], such
that [B]o = 0. Butby = A — B, it follows that for all valuations,
[—], [B] = 0 implies [A] = 0. So in particular, [A]o = 0. So then,
[~ B]o = 1and [- A], = 1, so we have found a valuation which
satisfies {— A, = B}. It follows, by completeness, that {—~ A, - B}
IS consistent. O

Proof 2: Suppose - A — B and I/ B. Also, suppose, for the sake
of contradication, that {— A, = B} is not consistent. By definition,
this means that = A, —~ B F 1. We then have the following natural
deduction proofs:

I -

We can therefore construct the following natural deduction proof:

[~ AL [ B
5 T
A-B A e
(—E)
[— B>
n (—E)
5 (RAA2)
We therefore have - B, contradicting our assumption. O

Problem 5. Let I" be a set of propositions such that for all proposi-
tional variables p,,, either " = p,, or I' = — p,,. Prove by induction:
for all propositions ¢, either I' = p or I' = = .

Note: To keep the problem short, do only the cases {atoms, —, A}.
Make sure you state the induction hypothesis clearly in each case.

Answer: Base case: if ¢ = p,, then the claim is true by assumption.

Induction step (—): suppose ¢ = =), and suppose that ' = o
or I' = = (induction hypothesis). We want to show I' = ¢ or
I' = —p. Casel: ifI' = ¢, then I' = == (because for any
valuation, [~ —¢] = [¢]. Therefore " = — . Case 2: if ' &= =4,
then I" = ¢, because ¢ = =19,

Induction step (A): suppose ¢ = ¥ A p, and suppose that (I' = ¢
orI' = —~¢)and (I' E por' &= —p) (induction hypothesis). We
wanttoshowI' = porI' = — . Case 1. if ' = ¢ and I |= p, then
IF'E=vY Ap hencel = ¢. Case 2. if I' = =), then ' = = (v A p),
because — v logically implies — (¢ A p). Therefore, I' = — . Case
3:ifI' E —p, then ' = =(y A p), because — p logically implies
—(1) A p). Therefore, T = — . Since at least one of the three cases
must hold, we are done. O

Problem 6. In this problem, we consider a version of Hintikka sets
for unsigned propositions. For simplicity, we consider a proposi-
tional logic using only the connectives {—, A}. Thus, we do not
consider the connectives {V, —, <, 1}

Let S be a set of unsigned propositions. S is called a Hintikka set if
it satisfies:

1. for no propositional symbol p, both p € S and (—p) € S,
2. if(pAY) e S thenpe Sandy € S,
3. if (=(pAY)) € S then(—g) € Sor () €S,
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4. if (=(=)) € S, thenp € S.

(@) Prove: Every Hintikka set is satisfiable.

Hint: first, define a suitable valuation [—]. Then, prove the
following statement by induction: for all propositions ¢, (¢ €
S=[p] =1 and ((—¢) € S=[¢] =0).

Answer: Let S be a Hintikka set. Define a valuation [—] by:
. 1 if p; € S,
1= 0 it gs
and extend [—] to composite formulas in the unique way:

[-v] = 1-[¥],
[ A p]l = min{[y] [p];-

We claim that for all propositions ¢, ¢ € S = [¢] = 1 and
() € S = [¢] = 0. We prove this by induction on .

Base case: if p = p; is atomic, then p; € S = [p;] = 1 by
definition. Also, assume —p; € S, then p; ¢ S by clause (1)
in the definition of a Hintikka set, so [p;] = 0 by definition.

Induction step (A): Assume ¢ = ¥ A p, and assume the induc-
tion hypothesis holds for i) and p. If ¢ € S, then by clause (2)
in the definition of a Hintikka set, v» € Sand p € S. By L.H.,
[v] = 1and [p] = 1, hence [¢] = [ A p]=1. If =p € S,
then by clause (3) in the definition of a Hintikka set, =y € S
or = p € S. Without loss of generality, assume —¢) € S.
Then by L.H., [)] = 0, hence [¢] = [ A p] = 0.

Induction step (—): Assume ¢ = — 1), and assume the induc-
tion hypothesis holds for ¢. If ¢ € S, then = ¢ € S, hence
[+]=0 by L.H., hence [¢]-1. If = € S, then == € S, and

(b)

by clause (4) in the definition of a Hintikka set, v € S, hence
by I.H., [¢] = 1, hence [—¢] = 1.

It follows that [—] satisfies all ¢ € S, so S is satisfiable. [

[Extra credit] Prove: Every maximally consistent set is a Hin-
tikka set.

Answer: Let S be a maximally consistent set of formulas.
From a theorem in class, we know that every maximally con-
sistent set satisfies o € S <= —p & S, for all . We prove
that S'is a Hintikka set:

(1) Since S is consistent, we cannot have p € Sand - p € S,
orelse S+ L.

(2) Assume ¢ A ¢p € S. Suppose ¢ ¢ S. Then =p € S
by maximality. But o A ¢»,~¢ F L, so S is inconsistent, a
contradiction. Therefore p € S.

(3) Assume —(p A 1)) € S. Suppose ~p & Sand -y £ S.
By maximal consistency, ¢ € S and ¢ € S. But = (¢ A
V), ¢,v F L, s0 S is inconsistent, a contradiction. Therefore
—peSornyeS.

(4) Assume == € S. By maximal consistency, - & S,
and therefore ¢ € S. We have shown that S satisfies all 4
conditions of a Hintikka set.



