
MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC,
Fall 2004

Answers to the Midterm

Problem 1. Prove the following in natural deduction, using your
choice of Fitch or Prawitz style:

(a) (A→ B) → C ` A∨ C.

Answer:

1 (A→B) → C

2 ¬(A∨ C)

3 A

4 A∨ C ∨I, 3

5 ⊥ ¬E, 2, 4

6 B ⊥E, 5

7 A→B ⇒I, 3–6

8 C ⇒E, 1, 7

9 A∨ C ∨I, 8

10 ⊥ ¬E, 2, 9

11 ¬ ¬(A∨ C) ¬I, 2–10

12 A∨ C ¬¬E, 11

(b) A∨B ` (¬B) → (C → A).
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Answer:

1 A ∨ B

2 ¬B

3 C

4 A

5 A R, 4

6 B

7 ⊥ ¬E, 2, 6

8 A ⊥E, 7

9 A ∨E, 1, 4–5, 6–8

10 C → A ⇒I, 3–9

11 ¬B → (C → A) ⇒I, 2–10

Problem 2. Prove the following proposition using analytic tableaux:

(a) (A∨B) → C ` (A→ C) ∧ (B → C).

Answer:

T (A ∨ B → C)
F ((A → C) ∧ (B → C))

ddddddddddddddd [[[[[[[[[[[[[[[

F (A ∨ B)
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FB
iiiiiii UUUUUUU

F (A → C)
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F (B → C)
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F (A → C)
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F (B → C)
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×
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(b) B ∧ C → A, (¬A) → C ` (C → B) → A.

Answer:

T (B ∧ C → A)
T (¬A → C)
F ((C → B) → A)
T (C → B)
FA

xxxx \\\\\\\\\\\\\\\\\\\\\\\\\\

F (B ∧ C)
ffffffffff ZZZZZZZZZZZZZZZ

FB
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F (¬A)
TA

×

TC

×
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×

FC
wwww QQQQQ

F (¬A)
TA

×

TC

×

TA

×

Problem 3. Let us write v(ϕ) for the number of occurrences of
propositional variables in a proposition ϕ. Let us write c(ϕ) for
the number of occurrences of connectives in ϕ.

Examples:

v(((p2 ∧ p5) → (⊥ ∧ p2))) = 3, because there are 3 variable
occurrences p2, p5, p2.

c(((p2 ∧ p5) → (⊥ ∧ p2))) = 4, because there are 4 occurrences
of connectives ∧,→,⊥,∧.

(a) Give recursive definitions of v(ϕ) and c(ϕ).
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Answer:

v(pi) = 1
v(⊥) = 0
v((ϕ� ψ)) = v(ϕ) + v(ψ)
v((¬ϕ)) = v(ϕ)

c(pi) = 0
c(⊥) = 1
c((ϕ� ψ)) = c(ϕ) + c(ψ) + 1
c((¬ϕ)) = c(ϕ) + 1

(b) Prove: for all ϕ, v(ϕ) 6 c(ϕ) + 1.

Answer: Base case: v(pi) = 1 6 0 + 1 = c(pi) + 1, and
v(⊥) = 0 6 1 + 1 = c(⊥) + 1.

Induction step: let ϕ = (ψ � θ). By induction hypothesis,
v(ψ) 6 c(ψ) + 1 and v(θ) 6 c(θ) + 1. We want to show
v(ϕ) 6 c(ϕ) + 1. But:

v(ϕ) = v(ψ � θ)
= v(ψ) + v(θ)
6 c(ψ) + 1 + c(θ) + 1 by ind.hyp.
= c(ψ � θ) + 1
= c(ϕ) + 1

Second induction step: let ϕ = (¬ψ). By induction hypoth-
esis, v(ψ) 6 c(ψ) + 1. We want to show v(ϕ) 6 c(ϕ) + 1.
But:

v(ϕ) = v(¬ψ)
= v(ψ)
6 c(ψ) + 1 by ind.hyp.
= c(¬ψ)
= c(ϕ)
6 c(ϕ) + 1
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Problem 4. Suppose ` A→ B and 6` B. Prove: the set {¬A,¬B}
is consistent.

Answer: There are many possible proofs. Here are two examples.
Note that proof 1 uses soundness and completeness, whereas proof
2 does not.

Proof 1: Using soundness, we have |= A → B and 6|= B. Be-
cause 6|= B, it follows that there exists some valuation [[−]]0 such
that [[B]]0 = 0. But by |= A → B, it follows that for all valuations,
[[−]], [[B]] = 0 implies [[A]] = 0. So in particular, [[A]]0 = 0. So then,
[[¬B]]0 = 1 and [[¬A]]0 = 1, so we have found a valuation which
satisfies {¬A,¬B}. It follows, by completeness, that {¬A,¬B}
is consistent. �

Proof 2: Suppose ` A → B and 6` B. Also, suppose, for the sake
of contradication, that {¬A,¬B} is not consistent. By definition,
this means that ¬A,¬B ` ⊥. We then have the following natural
deduction proofs:

...
A→ B

¬A
...

¬B
...

⊥

We can therefore construct the following natural deduction proof:

[¬B]2

...
A→ B

[¬A]1
...

[¬B]2
...

⊥
(RAA1)

A
(→E)

B
(¬ E)

⊥
(RAA2)

B

We therefore have ` B, contradicting our assumption. �
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Problem 5. Let Γ be a set of propositions such that for all proposi-
tional variables pn, either Γ |= pn or Γ |= ¬ pn. Prove by induction:
for all propositions ϕ, either Γ |= ϕ or Γ |= ¬ϕ.

Note: To keep the problem short, do only the cases {atoms,¬,∧}.
Make sure you state the induction hypothesis clearly in each case.

Answer: Base case: ifϕ = pn, then the claim is true by assumption.

Induction step (¬): suppose ϕ = ¬ψ, and suppose that Γ |= ψ

or Γ |= ¬ψ (induction hypothesis). We want to show Γ |= ϕ or
Γ |= ¬ϕ. Case 1: if Γ |= ψ, then Γ |= ¬ ¬ψ (because for any
valuation, [[¬ ¬ψ]] = [[ψ]]. Therefore Γ |= ¬ϕ. Case 2: if Γ |= ¬ψ,
then Γ |= ϕ, because ϕ = ¬ψ.

Induction step (∧): suppose ϕ = ψ ∧ ρ, and suppose that (Γ |= ψ

or Γ |= ¬ψ) and (Γ |= ρ or Γ |= ¬ ρ) (induction hypothesis). We
want to show Γ |= ϕ or Γ |= ¬ϕ. Case 1: if Γ |= ψ and Γ |= ρ, then
Γ |= ψ ∧ ρ, hence Γ |= ϕ. Case 2: if Γ |= ¬ψ, then Γ |= ¬(ψ ∧ ρ),
because ¬ψ logically implies ¬(ψ∧ ρ). Therefore, Γ |= ¬ϕ. Case
3: if Γ |= ¬ ρ, then Γ |= ¬(ψ ∧ ρ), because ¬ ρ logically implies
¬(ψ ∧ ρ). Therefore, Γ |= ¬ϕ. Since at least one of the three cases
must hold, we are done. �

Problem 6. In this problem, we consider a version of Hintikka sets
for unsigned propositions. For simplicity, we consider a proposi-
tional logic using only the connectives {¬,∧}. Thus, we do not
consider the connectives {∨,→,↔,⊥}

Let S be a set of unsigned propositions. S is called a Hintikka set if
it satisfies:

1. for no propositional symbol p, both p ∈ S and (¬ p) ∈ S,

2. if (ϕ∧ ψ) ∈ S, then ϕ ∈ S and ψ ∈ S,

3. if (¬(ϕ∧ ψ)) ∈ S, then (¬ϕ) ∈ S or (¬ψ) ∈ S,
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4. if (¬(¬ϕ)) ∈ S, then ϕ ∈ S.

(a) Prove: Every Hintikka set is satisfiable.

Hint: first, define a suitable valuation [[−]]. Then, prove the
following statement by induction: for all propositions ϕ, (ϕ ∈
S ⇒ [[ϕ]] = 1) and ((¬ϕ) ∈ S ⇒ [[ϕ]] = 0).

Answer: Let S be a Hintikka set. Define a valuation [[−]] by:

[[pi]] =

{

1 if pi ∈ S,

0 if pi 6∈ S,

and extend [[−]] to composite formulas in the unique way:

[[¬ψ]] = 1 − [[ψ]],
[[ψ ∧ ρ]] = min{[[ψ]],[[ρ]]}.

We claim that for all propositions ϕ, ϕ ∈ S ⇒ [[ϕ]] = 1 and
(¬ϕ) ∈ S ⇒ [[ϕ]] = 0. We prove this by induction on ϕ.

Base case: if ϕ = pi is atomic, then pi ∈ S ⇒ [[pi]] = 1 by
definition. Also, assume ¬ pi ∈ S, then pi 6∈ S by clause (1)
in the definition of a Hintikka set, so [[pi]] = 0 by definition.

Induction step (∧): Assume ϕ = ψ∧ρ, and assume the induc-
tion hypothesis holds for ψ and ρ. If ϕ ∈ S, then by clause (2)
in the definition of a Hintikka set, ψ ∈ S and ρ ∈ S. By I.H.,
[[ψ]] = 1 and [[ρ]] = 1, hence [[ϕ]] = [[ψ ∧ ρ]]=1. If ¬ϕ ∈ S,
then by clause (3) in the definition of a Hintikka set, ¬ψ ∈ S

or ¬ ρ ∈ S. Without loss of generality, assume ¬ψ ∈ S.
Then by I.H., [[ψ]] = 0, hence [[ϕ]] = [[ψ ∧ ρ]] = 0.

Induction step (¬): Assume ϕ = ¬ψ, and assume the induc-
tion hypothesis holds for ψ. If ϕ ∈ S, then ¬ψ ∈ S, hence
[[ψ]]=0 by I.H., hence [[ϕ]]=1. If ¬ϕ ∈ S, then ¬ ¬ψ ∈ S, and
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by clause (4) in the definition of a Hintikka set, ψ ∈ S, hence
by I.H., [[ψ]] = 1, hence [[¬ϕ]] = 1.

It follows that [[−]] satisfies all ϕ ∈ S, so S is satisfiable. �

(b) [Extra credit] Prove: Every maximally consistent set is a Hin-
tikka set.

Answer: Let S be a maximally consistent set of formulas.
From a theorem in class, we know that every maximally con-
sistent set satisfies ϕ ∈ S ⇐⇒ ¬ϕ 6∈ S, for all ϕ. We prove
that S is a Hintikka set:

(1) Since S is consistent, we cannot have p ∈ S and ¬ p ∈ S,
or else S ` ⊥.

(2) Assume ϕ ∧ ψ ∈ S. Suppose ϕ 6∈ S. Then ¬ϕ ∈ S

by maximality. But ϕ ∧ ψ,¬ϕ ` ⊥, so S is inconsistent, a
contradiction. Therefore ϕ ∈ S.

(3) Assume ¬(ϕ ∧ ψ) ∈ S. Suppose ¬ϕ 6∈ S and ¬ψ 6∈ S.
By maximal consistency, ϕ ∈ S and ψ ∈ S. But ¬(ϕ ∧

ψ), ϕ, ψ ` ⊥, so S is inconsistent, a contradiction. Therefore
¬ϕ ∈ S or ¬ψ ∈ S.

(4) Assume ¬ ¬ϕ ∈ S. By maximal consistency, ¬ϕ 6∈ S,
and therefore ϕ ∈ S. We have shown that S satisfies all 4
conditions of a Hintikka set.
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