MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC, Fall 2004
Handout 1. Rulesof Fitch-style natural deduction
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Thebiconditional

To simplify our formal proof system, we do not introduce any special rules for the connective <. Instead, we simply
regard the formula A < B as an abbreviation for (A = B) A (B = A).

Repetition (R)

Let A be a formula written at line & (either as a hypothesis, or as a formula already proven). Then one can repeat A
at line m if:

(1) kK <m,and

(2) every vertical from line k continues without interruption to line m.

Examples:
koA B g
Thisisok: | : | This too: | : But not this:
n n
m |A R, k .
m A RE m
Derived rules

It is possible to create additional rules to be used in natural deduction proofs. These rules are derived from the
official rules which are stated above; they can be regarded as “shortcuts”. If you want to use such a derived rule, you
first have to prove it (i.e., give a separate formal proof which justifies the rule).

One example of a derived rule is De Morgan’s law for disjunction,
-(AV B)F-ANA-B.

We can give a formal proof of De Morgan’s law using only the rules of natural deduction given above:
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Having given this formal proof, we can now use De Morgan’s law as a derived rule, as follows:

m | 7(AV B)

n -AAN—-B DeMorgan, m

Note that there are three other De Morgan’s laws, namely

-AAN-B + =(AVB)

-(AAB) - —-AV-B

-AV-B + —(AAB)
Each of them must be proven separately in natural deduction; thereafter, it can be used as a derived rule.
Problem 1. Give formal proofs of the remaining three laws of De Morgan.

Problem 2. For any proposition ¢, let r(¢) be the rank of ¢ and let ¢(¢) be the number of connectives in ¢
(connectives are { L, A,V,—, <>, }). (a) Write down recursive definitions of  and ¢ (for r, a definition was
already given in class). (b) Prove, by induction, that »(¢) < ¢(¢) for all ¢ € PROP.

Problem 3. Prove that there exists no ¢ € PROP such that the length of ¢ is 6 symbols.

Problem 4. For the purpose of this problem, we ignore the connectives “_L”, “—” and “«", i.e., we consider
propositions built from “A”, *“Vv”, and “—" only. The De Morgan dual of a proposition ¢ is defined as follows:

dm(p;) = p;

dm((p AY)) = (dm(p) V dm(y))
dm((w\/w ) = (dm(p) A dm(v))
dm(( =) ) = ( ~dm(p))

(a) Let r be the rank function. Prove r(¢) = r(dm(yp)) for all .
(b) Let [—] be a valuation, and define [—]’ by [¢]’ = 1 — [dm(¢p)]. for all ¢. Prove that [—]’ is a valuation.

(c) A proposition ¢ is called satisfiable if there exists a valuation [—] such that [¢] = 1. Prove that ¢ is satisfiable
if and only if dm(¢p) is not valid.
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