MAT 5361, TOPICS IN QUANTUM COMPUTATION, WINTER 2004
Lecture Notes 1: A Hahn-Banach style theorem for normed cones

1 Abstract cones

Let R be the set of non-negative reals. An abstract cone is analogous to a real vector
space, except that we take the non-negative reals as scalars. Since the non-negative
reals do not form a field, we have to replace the vector space law v + (—v) = O by a
cancelation law v + v = w + u = v = w. We also require strictness, which means,
no non-zero element has a negative.

Definition (Abstract cone). An abstract cone is a set C, together with two operations
+:CxC —Cand-: Ry x C — C andadistinguished element 0 € C, satisfying
the following laws for all v, w,u € C'and A\, p € Ry:

Additive laws: Multiplicative laws:
0+v=vw lv=w

v+ (w+u)=w+w)+u (A)v = A(pw)
v+w=w+v A+ p)v = Av + po

v+tu=w+u = wv=w (cancelation) Alv+w) = Av + Aw,

v+w=0 = wv=w=0 (strictness)
Examples. R is an abstract cone. The set
RY ={(z1,...,2p) | ®1,..., 20 € R4}

is an abstract cone, with the coordinatewise operations. More generally, if C+,...,C,
are abstract cones, then so is C; x ... x C,,. The set of all complex hermitian positive
n X n-matrices,

Pp={A€C™™ | A= A"and Vv € C"v* Av > 0}

is an abstract cone. Also, for any signature o = ny, ..., ns, the set of positive matrix
tuples P, := P,, X ... x P,_ is an abstract cone.

Definition (Linear function of abstract cones). A linear function of abstract cones
is a function f : C' — D suchthat f(v+ w) = f(v) + f(w) and f(Av) = Af(v), for
allv,we Cand A € R,

Remark. Every abstract cone C can be completed to a real vector space V. The
elements of V¢ are pairs (v, w), where v,w € C, modulo the equivalence relation
(v,w) ~ (v, w') ifv+w = v + w. Addition and multiplication by non-negative
scalars are defined pointwise, and we define —(v, w) = (w, v). Moreover, any linear
function of abstract cones f : C' — C" extends uniquely to a linear function of vector
spaces f : Vo — Voo

We say that an abstract cone C' is finite dimensional if V is a finite dimensional
vector space. Note that, unlike vector spaces, finite dimensional cones need not be
spanned by a finite set. A counterexample is C' = {(z,y,2) € R? | /22 +y2 < z}.

Definition (Convexity). A subset D of an abstract cone C'is said to be convex if for
all u,v € Dand X € [0,1], Au+ (1 — A)v € D. The convex closure of a set D is
defined to be the smallest convex set containing D.

2 Theconeorder

Definition (Cone order). Let C be an abstract cone. The cone order is defined by
setting v C w if there exists u € C such that v + v = w. Note that the cone order is a
partial order. If v C w, then the element u such that v + u = w is necessarily unique,
and thus we may also write u = w — v.

Remark. Note that every linear function of abstract cones f : C' — D is also monotone,
i.e., v C v implies f(v) C f(v).

Examples. On R, the cone order is just the usual order < of the reals. On R?, it is
the pointwise order. On P, it is the so-called Lowner partial order.

Definition (Down closure). Let D C C be a subset of an abstract cone. We define its
down-closure | D to be the set {u € C|3v € D.u C v}. We say that D is down-closed
if D = | D. The concept of up-closure is defined dually.

Lemma 2.1. The down-closure of a convex set is convex.

Proof. We use the easily verified fact that addition and scalar multiplication are mono-
tone, thus v’ C wand v’ C v implies Au’ + (1 — A\)v' C du+ (1 — Ao, O

3 A separation theorem for abstract cones

Definition (Generating set). Let C be an abstract cone, and let D C C be a down-
closed, convex set. We say that D generates C if for all v € C, there exists some
A > 0 such that \v € D.

Theorem 3.1 (Separation). Let C be an abstract cone, let U and D be convex sets
such that U is up-closed, D is down-closed, and U N D = §. Moreover, assume that
D generates C. Then there exists a linear function f : C — R, such that f(v) < 1
forallv e Dand f(u) > 1forallu e U.

Proof. Let £ be the class of subsets £ C C with the following properties: E is convex
and down-closed, D C FE,and ENU = (). Clearly D € &£, and moreover, £ is closed
under unions of chains; therefore, by Zorn’s Lemma, there is a maximal element in £
with respect to inclusion.

Let £ be maximal in £, and let E¢ = C'\ E be its complement. We will prove
that E< is convex. We use the following convention: for scalars A € [0, 1], we write
A = 1—\. We first claim that for every v € E°, the convex closure of EU{v} intersects
U. Namely, let E, be this convex closure. Then |, is convex by Lemma 2.1. By
maximality of £, we must have | E, N U # (), and therefore £, N U # () since U is
up-closed.



Now assume that £ is not convex. Then there exist vg,v; € E€and A € [0, 1]
such that Avg + Av; € E. By the previous paragraph, fori = 0,1, we canfinde; € E
and p; € [0,1] such that u;v; + m;e; € U. Note that e; ¢ U implies u; # 0. Let
w = \vg + Mq and u; = 1iv; + f;e;. Then we have:

A Ao _ Amafio Ao H1po
—up + — Uy = —e€p + —e€] + =
Ap + Ao Apr + Ao A + Ao A1 + Ao A1 + Ao

The left-hand-side is a convex combination of ug,u; € U, and the right-hand-side is
a convex combination of eg,e;,w € FE. This contradicts the fact that U and E are
convex and disjoint, proving that £ ¢ is convex.

If Ais a subset of a cone, we write AA = {Aa | a € A}. Note that A is convex iff
forall A\, u > 0, \A + pA C (A + ) A. We now define the function f by

f)=inf{A|veAE, A>0}

Note that because D C F and D generates C, the set E also generates C. Therefore,
for all v € C, there exists some )\ such that v € AE. Thus, f(v) is well-defined and
finite. Moreover, since D C F, it follows that f(v) < 1 forall v € D. On the other
hand, if u € U, thenforall A < 1, u & AF; thus f(u) > 1. It remains to be shown that
f is linear.

First, we show that f is monotone; this follows directly from the definition and
the fact that E' is down-closed. Also immediate is the fact that f(Av) = Af(v). The
inequality f(v + w) < f(v) + f(w) follows from the convexity of E.

To prove the opposite inequality f(v) + f(w) < f(v+ w), we consider two cases.
If f(v) = 0or f(w) = 0, then this inequality follows from monotonicity. Otherwise,
suppose f(v), f(w) # 0. Consider any A, > 0 such that A < f(v) and p < f(w).
Then by definition of f, we have v ¢ AE and w ¢ pF, hencev € AE€and w € pE°.
Convexity of E¢ implies that v + w € (A + u)E€, hence A + u < f(v + w). Since
A,  were arbitrary, this shows f(v) + f(w) < f(v +w). O

4 Normed cones

Definition (Normed cone). Let C' be an abstract cone. A norm on C'is a function
-1l : C — Ry satisfying the following conditions for all v,w € C'and A € R.:

lv+w|| < |lv|| + [Jw] (triangle inequality)
[IAoll = Aol (linearity)

[l =0=v=0 (strictness)
vCw=|v]| <|lw]| (monotonicity)

A normed cone C = (C, ||—||c) is an abstract cone C' equipped with a norm ||—|| c.

The first three conditions are just the usual conditions for a norm on a vector space,
except of course that the scalar property is restricted to non-negative scalars. The last
condition ensures that the norm is monotone. Note that monotonicity does not follow
from the remaining three axioms.

If C = (C, |—||c) is anormed cone, we define its unit ideal to be the set
Dg ={veC||llc <1}
The unit ideal is a down-closed and convex subset of C.

Definition (Non-expanding linear function). Let C and C’ be normed cones. A
linear function f : C — C’ is non-expanding (or norm non-increasing) if for all
vel [lf(vlle <vle.

5 A Hahn-Banach style theorem for normed cones

Theorem 5.1. Let C be a normed cone, and let u € C with |ju||c = 1. Then there
exists a non-expanding linear function f : C' — R such that f(u) = 1.

Proof. Apply Theorem 3.1to thesets D = DcandU = T{ \u | A > 1}. O



