MAT 5361, TOPICS IN QUANTUM COMPUTATION, WINTER 2004 Answers to Homework 1 **Problem 1.1** First, we verify the density matrix formula in case of a pure state. This was already almost done in class: it is a simple matter of re-expressing the probability diagram with matrices: What needs to be shown now is that this extends to mixed states as expected, i.e., linearly. For simplicity, consider a mixture of two pure states (mixtures of n pure states can be treated similarly): Suppose the initial mixed state is $m = \lambda_0 \{v_0\} + \lambda_1 \{v_1\}$, where $v_0 = (\alpha, \beta, \gamma, \delta)^T$, $v_1 = (\alpha', \beta', \gamma', \delta')^T$, and $\lambda_0, \lambda_1 \ge 0$, $\lambda_0 + \lambda_1 \le 1$. There are four possible outcomes of the measurement, namely $w_{00} = (\alpha, \beta, 0, 0)$, $w_{01} = (0, 0, \gamma, \delta)$, $w_{10} = (\alpha', \beta', 0, 0)$, $w_{11} = (0, 0, \gamma', \delta')$. To deal with conditional probabilities correctly, let us write I_i for the event "the experiment starts in state v_i ", M_k for the event "the outcome of the measurement is $k \in \{\mathbf{0}, \mathbf{1}\}$ ", and O_{ik} for " I_i and M_k "; this event corresponds to the outcome w_{ik} . Recall that P(A) denotes the probability of an event A, and P(A|B) denotes the conditional probability of an event A, assuming the event B. Also recall Bayes' law of probabilities: $$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$ Note that $P(I_i) = \lambda_i$ is given, and that $P(M_k|I_i) = |w_{ik}|^2$ follows from out knowledge of the pure case. We are interested in two questions: (1) what are $P(M_0)$ and $P(M_1)$, and (2) assuming M_k has occurred, then in which mixed state will the system be after the measurement? The answer to the first question is an easy application of Bayes' law. Because I_0 and I_1 are disjoint events and $M_k \subseteq I_0 \cup I_1$, we have: $$P(M_k) = P(M_k \text{ and } I_0) + P(M_k \text{ and } I_1)$$ = $P(I_0)P(M_k|I_0) + P(I_1)P(M_k|I_1)$ = $\lambda_0|w_{0k}|^2 + \lambda_1|w_{1k}|^2$. For the second question, the density matrix of the outgoing state, assuming that **0** has been measured, is by definition the following (assuming here the ordinary normalization convention, by which density matrices have trace 1): $$D_0 = \sum_{ik} P(O_{ik}|M_0) \frac{1}{|w_{ik}|^2} w_{ik} w_{ik}^*.$$ We can calculate: $$P(O_{i0}|M_0) = P(I_i \text{ and } M_0|M_0) = \frac{P(I_i \text{ and } M_0)}{P(M_0)} = \frac{P(I_i)P(M_0|I_i)}{P(M_0)} = \frac{\lambda_i|w_{i0}|^2}{P(M_0)}$$ and $$P((O_{i1}|M_0) = P(I_i \text{ and } M_1|M_0) = 0$$ It follows that $$D_0 = \frac{1}{P(M_0)} \sum_{i} \lambda_i w_{i0} w_{i0}^*.$$ By our advanced normalization convention, we multiply this probability by $P(M_0)$, so that the re-normalized density matrix in the measurement branch $\mathbf{0}$ is: $$D_0' = \sum_i \lambda_i w_{i0} w_{i0}^*.$$ Finally, we note that if $$\sum_{i} \lambda_{i} v_{i} v_{i}^{*} = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right)$$ was the density matrix of the initial mixed state of the system, then D'_0 is just $$D_0' = \sum_{i} \lambda_i w_{i0} w_{i0}^* = \begin{pmatrix} A & 0 \\ \hline 0 & 0 \end{pmatrix},$$ as was to be shown. The calculation for k=1 is analogous. Note: in the above calculations, we have ignored the possibility of zero denominators. A careful analysis shows that zero denominators only occur where the corresponding numerator is also zero, and we can drop such terms without affecting the validity of the overall argument. **Problem 1.2** (a) In finite dimension, all norms are equivalent. More specifically, when $A \in \mathbb{C}^{n \times n}$ and $v \in \mathbb{C}^n$, we have $$|Av|^2 = \sum_i (\sum_j a_{ij} v_j)^2 \leqslant \sum_i (\sum_j a_{ij}^2) (\sum_j v_j^2) = ||A||_2 |v|,$$ and thus $||A|| \le ||A||_2$. It follows that if the theorem gives $||B - \lambda B'||_2 \le \epsilon$, then $||B - \lambda B'|| \le \epsilon$ holds as well. (b) For the first part, note that $|ABv| \leq ||A|||Bv| \leq ||A|||B|||v|$, by definition of ||A|| and ||B||. Thus, $|v| \leq 1$ implies that $|ABv| \leq ||A|||B||$. Since ||AB|| is the supremum of all such |ABv|, we have $||AB|| \leq ||A|||B||$. For the second part, first note that if $A \in \mathbb{C}^{n' \times n}$ and $B \in \mathbb{C}^{m' \times m}$, and if $w \in \mathbb{C}^n$ and $u \in \mathbb{C}^m$, then $(A \otimes B)(w \otimes u) = Aw \otimes Bu$, and $|w \otimes u| = |w||u|$. Now, assume $|w| \leqslant 1$ and $|u| \leqslant 1$. Then $|Aw||Bu| = |Aw \otimes Bu| = |(A \otimes B)(w \otimes u)| \leqslant \|A \otimes B\||w \otimes u| = \|A \otimes B\||w||u| \leqslant \|A \otimes B\|$. By taking the supremum of the left-hand-side, we get $\|A\|\|B\| \leqslant \|A \otimes B\|$. Conversely, assume $v \in \mathbb{C}^{nm}$ with $|v| \leqslant 1$. Then we can write $v = \sum_i w_i \otimes u_i$ in such a way that $|v| = \sum_i |w_i||u_i|$ — indeed, this is possible by writing $v = (u_1, \ldots, u_n)$, and letting $w_i = e_i$. Then $(A \otimes B)v = (A \otimes B)(\sum_i w_i \otimes u_i) = \sum_i (A \otimes B)(w_i \otimes u_i) = \sum_i (Aw_i \otimes Bu_i)$, thus $|(A \otimes B)v| \leqslant \sum_i |Aw_i \otimes Bu_i| \leqslant \sum_i |A\||w_i| |B\||u_i| = |A\|\|B\|\sum_i |w_i||u_i| = \|A\|\|B\|v\|$. It follows that $\|A \otimes B\| \leqslant \|A\|\|B\|$. (c) First, suppose that $\|B - \lambda B'\| \le \epsilon$, and let $A = \mathrm{id}_n \otimes B$ and $A' = \mathrm{id}_n \otimes B'$. Then $\|A - \lambda A'\| = \|\mathrm{id}_n \otimes (B - \lambda B')\| = \|\mathrm{id}_n\| \|B - \lambda B'\| \le 1\epsilon = \epsilon$. Thus, if a gate is approximated within a certain error, then the error does not change by adding additional perfect parallel wires. Second, suppose B_1, B_2, B_1', B_2' are unitary gates and λ_1, λ_2 are unit scalars such that $\|B_1 - \lambda_1 B_1'\| \le \epsilon_1$ and $\|B_2 - \lambda_2 B_2'\| \le \epsilon_2$, and let $B = B_1 B_2, B' = B_1' B_2'$, and $\lambda = \lambda_1 \lambda_2$. Then $$||B - \lambda B'|| = ||B_1 B_2 - \lambda_1 \lambda_2 B'_1 B'_2||$$ $$= ||B_1 B_2 - \lambda_1 B'_1 B_2 + \lambda_1 B'_1 B_2 - \lambda_1 \lambda_2 B'_1 B'_2||$$ $$\leqslant ||B_1 B_2 - \lambda_1 B'_1 B_2|| + ||\lambda_1 B'_1 B_2 - \lambda_1 \lambda_2 B'_1 B'_2||$$ $$= ||B_1 - \lambda_1 B'_1|| ||B_2|| + ||\lambda_1 B'_1|| ||B_2 - \lambda_2 B'_2||$$ $$\leqslant \epsilon_1 ||B_2|| + \epsilon_2 ||\lambda_1 B'_1||$$ Since B_2 and B_1' are unitary, we have $||B_2|| = ||\lambda_1 B_1'|| = 1$, and thus $||B - \lambda B'|| \le \epsilon_1 + \epsilon_2$. This shows that error propagation is additive. The case for n gates now follows by an easy induction. (d) By part (c), we know that to approximate an n-gate circuit within ϵ , we must approximate each gate within ϵ/n . By the Kitaev-Solovay Theorem, each gate can be approximated within error ϵ/n by using at most $c\log^d(n/\epsilon)$ basic gates. Thus, the total number of gates required is at most $nc\log^d(n/\epsilon)$. As a function of n, this behaves like $n\log n$, which is certainly bounded by a polynomial in n (in fact, much less than $O(n^2)$). So the approximation given by the Kitaev-Solovay Theorem scales well to large quantum circuits. **Problem 1.3** (a) $A \in D_n$ is maximal iff $\operatorname{tr} A = 1$. Proof: suppose $\operatorname{tr} A = 1$ and $A \sqsubseteq B$. Then B - A is positive, hence $\operatorname{tr}(B - A) \geqslant 0$. But also $\operatorname{tr}(B - A) = \operatorname{tr} B - \operatorname{tr} A \leqslant 1 - 1 = 0$, hence $\operatorname{tr}(B - A) = 0$; since B - A is positive, it follows that B - A = 0, hence A = B, so A was maximal. Conversely, suppose $\operatorname{tr} A < 1$, and let $B = A + (1 - \operatorname{tr} A)I$, where I is the identity matrix. Then clearly $\operatorname{tr} B \in D_n$ and $A \sqsubseteq B$, but $A \neq B$, hence A is not maximal. (b) This is tricky. We first consider the case where n=1. In this case, a density matrix is just a scalar $0 \le a \le 1$. On scalars, define the relation $a <_0 b$ iff (a=0) or a < b. Then we have $a \ll b$ iff $a <_0 b$. Proof: suppose $a \ll b$ and $a \ne 0$. Consider $a_i = (1 - \frac{1}{i})b$, then $b \leqslant \bigvee_i a_i$, therefore there is some i with $a \leqslant a_i$, therefore a < b. Conversely, suppose that $a <_0 b$ and $b \leqslant \bigvee_i a_i$. If a = 0, then $a \leqslant a_i$ trivially. Otherwise a < b, and therefore $a < \bigvee_i a_i$. by leastness of the upper bound, it follows that $a < a_i$ for some a_i . Now we can do the case for general n. For $A, B \in D_n$, we have $A \ll B$ iff for all $v \in \mathbb{C}^n$, $v^*Av <_0 v^*Bv$. [Equivalently, all the eigenvalues of B-A are non-negative, and any eigenvector of eigenvalue 0 of B-A is already an eigenvector of eigenvalue 0 of A.] For example: $$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \ll \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}, \qquad \begin{pmatrix} 0.2 & 0 \\ 0 & 0 \end{pmatrix} \ll \begin{pmatrix} 0.5 & 0 \\ 0 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0.2 & 0 \\ 0 & 0.3 \end{pmatrix} \ll \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}, \qquad \begin{pmatrix} 0.2 & 0 \\ 0 & 0.5 \end{pmatrix} \not \ll \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}.$$ Proof idea: The proof is mostly pointwise, but in the right-to-left direction, we need to use compactness to show that i can be chosen uniformly for all v. Proof: " \Rightarrow ": Suppose $A \ll B$, and take some $v \in \mathbb{C}^n$. If $v^*Av = 0$, then there is nothing to show. Else, we have $v^*Av > 0$. Let $A_i = (1 - \frac{1}{i})B$, so that $B = \bigvee_i A_i$. Therefore, $A \sqsubseteq A_i$ for some i. It follows that $v^*Av \leqslant v^*A_iv$, therefore $v^*A_iv \neq 0$. Then $v^*A_iv = (1 - \frac{1}{i})v^*Bv < v^*Bv$, so finally, $v^*Av < v^*Bv$, as desired. " \Leftarrow ": For any positive matrix A, define $\operatorname{null}(A) = \{v \in \mathbb{C}^n \mid Av = 0\}$ and $\operatorname{ran}(A) = \{Av \mid v \in \mathbb{C}^n\}$. Note that $\operatorname{null}(A)$ and $\operatorname{ran}(A)$ are orthogonal complements of each other; also $v \in \operatorname{null}(A)$ iff $v^*Av = 0$; these facts follow from diagonalization. Also note that $A \sqsubseteq B$ implies $\operatorname{null}(B) \subseteq \operatorname{null}(A)$. Now assume that for all $v, v^*Av <_0 v^*Bv$. Then, by definition, $A \sqsubseteq B$. To show that $A \ll B$, take a directed sequence (A_i) such that $B \sqsubseteq \bigvee_i A_i$. Let $B' = \bigvee_i A_i$, and let $S = \{v \in \operatorname{ran}(B') \mid |v| = 1\}$. As the unit ball of the finite dimensional space $\operatorname{ran}(B')$, the set S is thus a compact set. Now for all i, let $S_i = \{v \in S \mid v^*A_iv \leqslant v^*Av\}$. As a closed subset of the compact set S, each S_i is compact. Moreover, since the quantity v^*A_iv increases with i, we have $S_i \supseteq S_j$ for $i \leqslant j$, so $(S_i)_i$ is a decreasing sequence of compact sets. We claim that the intersection $\bigcap_i S_i$ is empty: for take some $v \in S$, then $v^*Av <_0 v^*Bv$ by assumption, therefore $v^*Av <_0 v^*B'v$, but $v^*B'v \ne 0$, hence $v^*Av <_0 v^*B'v$. But as $i \to \infty$, we have $v^*A_iv \to v^*B'v$, therefore there exists some i with $v^*A_iv > v^*Av$, hence $v \not\in S_i$. So $(S_i)_i$ is a decreasing sequence of compact sets with empty intersection. It follows that some S_i is already empty. Therefore, there exists some i such that for all $v \in S$, $v^*A_iv > v^*Av$. We now claim that $A \sqsubseteq A_i$. We already know that $v^*Av \leqslant v^*A_iv$ for all $v \in S$, and therefore for all $v \in \operatorname{ran}(B')$. Now take any $v \in \mathbb{C}^n$, then v can be written v = u + w, where $v \in \operatorname{null}(B')$, $v \in \operatorname{null}(B')$. Since $v \in \operatorname{null}(A_i)$; also, since $v \in \operatorname{null}(A_i)$. Therefore $v^*Av = (u + w)^*A(u + w) = w^*Aw \leqslant w^*A_iw = (u + w)^*A_i(u + w) = v^*A_iv$. Since $v \in \operatorname{null}(A_i)$ we have $v \in \operatorname{null}(A_i)$ as desired, and thus $v \in \operatorname{null}(A_i)$ as desired, and thus $v \in \operatorname{null}(A_i)$ is a desired, and thus $v \in \operatorname{null}(A_i)$. ## Problem 1.4 (a) $$F(A, B, C, D) = (A + C, B, D, 0)$$. (b) $$F\left(\begin{array}{c|cc|c} A & B \\ \hline C & D \end{array}\right) = \left(\begin{array}{c|cc|c} (a_{00} + x) & -x & (b_{00} + y) & -y \\ \hline -x & x & -y & y \\ \hline (c_{00} + z) & -z & (d_{00} + w) & -w \\ -z & z & -w & w \end{array}\right),$$ where $A = (a_{ij})_{ij}$, $B = (b_{ij})_{ij}$, etc, and $x = a_{11} + b_{11} + c_{11} + d_{11}$, $y = a_{11} - b_{11} + c_{11} - d_{11}$, $z = a_{11} + b_{11} - c_{11} - d_{11}$, $w = a_{11} - b_{11} - c_{11} + d_{11}$. - (c) F(A, B, C, D) = (0, B + D, A + C, 0). - (d) $F(A) = (\frac{1}{2}A, \frac{1}{2}A)$. (e) $$F\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$. (f) $$F\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & D \end{array}\right)$$. (g) $$F\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & D \end{array}\right)$$. (h) $$F\left(\begin{array}{c|c}A&B\\\hline C&D\end{array}\right)=(\left(\begin{array}{c|c}A&0\\\hline 0&0\end{array}\right),NDN).$$ (i) As in class, we write $\Phi(Y)$ for the superoperator obtained from this flow chart by "plugging" the recursive call with the superoperator Y. We let $F_0=0$ and $F_{i+1}=\Phi(F_i)$. Let $A=(a_{ij})_{ij}$. We calculate: $$F_2(A) = \begin{pmatrix} a_{00} & a_{01} & 0 & 0 \\ a_{10} & a_{11} & 0 & 0 \\ 0 & 0 & a_{22} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ $$F_3(A) = F_2(A).$$ Thus, we reach a fixpoint where $F(A) = \bigvee_i F_i(A) = F_2(A)$. This is the denotation of the recursively defined flowchart X. **Problem 1.5** (a) This is a superoperator. A Kraus representation is $F(A) = UAU^*$, where $U = \frac{1}{\sqrt{2}}(1\ 1)$; note that $U^*U = 1$. A flow chart is: (input p; p *= H; if (measure p)=0 then discard p else diverge). (b) This problem is best analyzed in terms of its characteristic matrix, which we can easily write down: $$\chi_F = \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{3} \end{pmatrix}$$ This matrix is seen to be writable as a sum of rank 1 positive matrices: $$\begin{pmatrix} \frac{1}{6} & 0 & \frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{6} & 0 & \frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{6} & 0 & 0 & \frac{1}{6} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{6} & 0 & 0 & \frac{1}{6} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6} & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & \frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6} & 0 & \frac{1}{6} \end{pmatrix},$$ and thus χ_F is positive, which proves that F is completely positive. Moreover, the trace characteristic matrix is $$\chi_F^{\text{tr}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix},$$ which is $\sqsubseteq I_2$. Therefore, F is a superoperator. A Kraus representation can be read off from the above decomposition of χ_F , namely: $F(A) = \sum_{i=1}^4 U_i A U_i^*$, where $$U_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, U_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, U_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, U_4 = \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$ Note that $\sum_i U_i U_i^* = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \sqsubseteq I_2$. A flow chart can be obtained from the Kraus representation, as in the proof of Theorem 6.12 in [Selinger], but this requires implementing a 16×16 unitary matrix. Instead of following the general procedure, it is easier to guess a flow chart directly from the decomposition of χ_F . (input p; with probability $\frac{2}{3}$ do skip else (if (measure p)=0 then skip else diverge); if (coin) then $p \oplus 1$ else skip). - (c) This is not positive, e.g. $F\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = (1, -1)$. - (d) This is a superoperator. A Kraus representation is $F(A) = \sum_{i=1}^{3} U_i A U_i^*$, where $$U_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, U_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, U_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$ Note that $\sum_i U_i^* U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. A possible flow chart is (input p; if (coin) then skip else if (measure p) then skip else skip). (e) This is a superoperator. A Kraus representation is: $$F(A,B) = (U_1 A U_1^*, U_2 A U_2^* + U_3 A U_3^* + V B V^*, U_4 A U_4^*),$$ where $$U_1 = \frac{1}{\sqrt{2}}(1\ 0\), U_2 = \frac{1}{2}\begin{pmatrix} 1\ 0\ 0 \end{pmatrix}, U_3 = \frac{1}{2}\begin{pmatrix} 0\ 0\ 1 \end{pmatrix}, U_4 = (0\ 1\), V = \begin{pmatrix} 1\ 0\ -i \end{pmatrix}.$$ Note that $\sum_i U_i^* U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $V^* V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. A flow chart is given by (input b,q; if (b=0) then (if (measure q)= 0 then (if (coin) then (discard q; exit 1) else q *= H; exit 2) else (discard q; exit 3)) else $q *= \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$; exit 2). **Problem 1.6** Suppose $F:V_{\sigma}\to V'_{\sigma}$ and $G:V_{\tau}\to V'_{\tau}$ are superoperators. To prove that $F\oplus G:V_{\sigma\oplus\sigma'}\to V_{\tau\oplus\tau'}$ is a superoperator, note that for $A\in D_{\sigma}$ and $B\in D_{\tau}$, we have $(F\oplus G)(A,B)=(FA,GB)$, which is clearly positive and satisfies ${\rm tr}(FA,GB)={\rm tr}\,FA+{\rm tr}\,GB\leqslant {\rm tr}\,A+{\rm tr}\,B$, by assumption on F and G. Moreover, for $A\in D_{\rho\otimes\sigma}$ and $B\in D_{\rho\otimes\tau}$, we have ${\rm id}_{\rho}\otimes (F\oplus G)(A,B)=(({\rm id}_{\rho}\otimes F)(A),({\rm id}_{\rho}\otimes G)(B))$, which is also still positive. To show that $F\otimes G:V_{\sigma\otimes\sigma'}\to V_{\tau\otimes\tau'}$ is a superoperator, note that $F\otimes G=(\mathrm{id}_{\sigma'}\otimes G)\circ (F\otimes \mathrm{id}_{\tau}).$ The two component maps are completely positive by definition, and they clearly satisfy the trace condition, because e.g. $\mathrm{tr}_{\sigma'\otimes\tau'}\circ (\mathrm{id}_{\sigma'}\otimes G)(A)=(\mathrm{tr}_{\sigma'}\otimes (\mathrm{tr}_{\tau'}\circ G))(A)\leqslant (\mathrm{tr}_{\sigma'}\otimes \mathrm{tr}_{\tau})(A)=\mathrm{tr}_{\sigma'\otimes\tau}\,A.$ **Problem 1.7** (a) We have directly from the definition: $F \sqsubseteq G$ iff $\mathrm{id}_{\tau} \otimes (G-F)(A)$ is positive for all τ and A, iff G-F is completely positive. This is the case iff χ_{G-F} is a positive matrix, by a theorem from class. But $\chi_{G-F} = \chi_G - \chi_F$, so this holds iff $\chi_G - \chi_F$ is positive, iff $\chi_F \sqsubseteq \chi_G$. (b) Let $F:V_{\sigma}\to V_1$. Clearly, if F is completely positive, then it is positive by definition. Conversely, assume F is positive. Let $\chi_F=B=(b_{ij})$, then B is hermitian. By definition of χ_F , we have $F(E_{ij})=b_{ij}$, where E_{ij} is the ij-unit matrix. By linearity, $F(A)=\operatorname{tr}(BA^T)$ for all A. Now suppose B were not positive, then B has some eigenvector v for a negative eigenvalue λ . Then let $A^T=vv^*$, and we have $F(A)=\operatorname{tr}(Bvv^*)=\operatorname{tr}(v^*Bv)<0$, contradiction the positivity of F. Thus, $B=\chi_F$ is positive, hence F is completely positive by the characterization theorem from class. (c) Let $F, G: V_{\sigma} \to V_1$, then $F \sqsubseteq G$ iff G - F is completely positive iff G - F is positive iff for all positive $A, F(A) \sqsubseteq G(A)$.