MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 10

Problem 1 The given F is clearly a function class. Also, for all sets z, one has F(F(z)) = z, and thus F is one-to-one and onto the class of sets.

Here are some other examples of bijections of the universe onto itself. In the definition of H, A is a fixed arbitrary set.

Problem 2 For any set x, one has $x \in F^{-1}(\emptyset)$ iff $x \in F(F^{-1}(\emptyset))$ iff $x \in \emptyset$. This holds for no x. Moreover, if F is the bijection from Problem 1, then $0 \in 1 = F(0)$, thus $0 \in 0$.

Problem 3 Let A and B be any sets such that for all $x, x \in A \Leftrightarrow x \in B$. This means, $x \in F(A) \Leftrightarrow x \in F(B)$. By extensionality (for \mathscr{U}), this implies F(A) = F(B), hence, since F is one-to-one, A = B.

Problem 4 We have

 $\begin{array}{lll} x \in 'B & \Longleftrightarrow & x \in F(B) & \text{by definition of } \in '\\ \Leftrightarrow & x \in c & \text{by definition of } B\\ \Leftrightarrow & \exists b \, (x \in F(b) \wedge b \in F(A)) & \text{by definition of union}\\ \Leftrightarrow & \exists b \, (x \in 'b \wedge b \in 'A) & \text{by definition of } \in '. \end{array}$

Thus we have shown

$$\forall A \exists B \,\forall x \,[x \in' B \iff \exists b \,(x \in' b \land b \in' A)],$$

which is precisely the union axiom for \mathscr{U}' .

Problem 5 We have $c = \{F^{-1}(z) \mid z \subseteq F(A)\} = \{F^{-1}(z) \mid z \in \mathscr{P}(F(A))\}$. This is a set by the powerset axiom and replacement. Moreover, we have $x \in B$ iff $x \in F(B)$ iff $x \in c$ iff $F(x) \subseteq F(A)$ iff $x \subseteq A$. Thus, we have shown that

$$\forall A \exists B \,\forall x \,(x \in' B \iff x \subseteq' A),$$

which is precisely the power set axiom for \mathscr{U}' .

Problem 6 We verify the three properties:

$$\begin{array}{lll} z \in 'x \cup 'y & \Longleftrightarrow & z \in F(x \cup 'y) & \text{by definition of } \in '\\ \Leftrightarrow & z \in F(x) \cup F(y) & \text{by definition of } \cup '\\ \Leftrightarrow & z \in F(x) \lor z \in F(y) & \text{by definition of union}\\ \Leftrightarrow & z \in 'x \lor z \in 'y & \text{by definition of } \in '. \end{array}$$

The reasoning for \cap' is entirely analogous. Finally

$$\begin{array}{rcl} z \in ' \{x\}' & \Leftrightarrow & z \in F(\{x\}') \\ & \Leftrightarrow & z \in \{x\} \\ & \Leftrightarrow & z = x. \end{array}$$

Problem 7 Since η is the range of f, we have $\emptyset' = f(0) \in \eta = F(A)$, and thus $\emptyset' \in A$. Also, for any a, if $a \in A$, then $a \in F(A) = \eta$, thus a = f(n) for some n. Then $a \cup \{a\}' = f(n^+)$, and thus $a \cup sa' \in \eta = F(A)$, which implies $a \cup sa' \in A$.

Problem 8 Suppose that $x \in A_1$. Let u be such that x = F(u). Then $u \in F(A)$ by definition of A_1 (recall that F is a bijection). This implies $u \in A$, and hence $u \neq \emptyset'$ by assumption. It follows that $x = F(u) \neq F(\emptyset') = \emptyset$. This proves the first claim.

Now assume that $x, y \in A_1$ and $x \neq y$. Let u and v be such that x = F(u) and y = F(v). Then $u, v \in F(A)$ by definition of A_1 , hence $u, v \in 'A$. Since $u \neq v$, we have $u \cap 'v = \emptyset'$ by assumption. By definition of $\cap '$ and \emptyset' , this means $F^{-1}(F(u) \cap F(v)) = F^{-1}(\emptyset)$, hence $F(u) \cap F(v) = \emptyset$ since F^{-1} is one-to-one. But this means $x \cap y = \emptyset$, as desired.

Problem 9 We have $C \cap 'x = \{w\}'$ iff $F^{-1}(F(C) \cap F(x)) = F^{-1}(\{w\})$ iff $F(C) \cap F(x) = \{w\}$, by definition of $\cap', \{w\}'$, and the fact that F is a bijection. But $F(C) = C_1$, so the first claim follows. Further, it follows directly from the definition of A_1 , and the fact that F is a bijection, that $F(x) \in A_1$ iff $x \in F(A)$ iff $x \in 'A$.

Problem 10 In Problem 2, we have seen that the universe \mathscr{U}' in question satisfies $0 \in 0$. But by Theorem 7X, this contradicts regularity. Thus, regularity cannot hold in the universe \mathscr{U}' .