MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 6 (Revised)

Problem 4.19 We want to prove the claim: for all natural numbers d and m, if $d \neq 0$, then there exists natural numbers q, r such that $m = d \cdot q + r$ and r < d. Fix some $d \neq 0$; we will prove the claim by induction on m. For the *base case*, notice that if m = 0, then we can take q = r = 0. Indeed, we have $0 = d \cdot 0 + 0$ by (M1) and (A1), and also 0 < d, because $d \neq 0$. For the *induction step*, assume the claim holds for m. So there exist some $q, r \in \omega$ with $m = d \cdot q + r$ and r < d. Note that this implies $r^+ \leq d$. We distinguish two cases: Case 1: $r^+ < d$. In this case, we have $m^+ = d \cdot q + r^+$ by (A2), and we are done. Case 2: $r^+ = d$. In this case, we have $m^+ = d \cdot q + d = d \cdot q^+$ by (M2), so $m^+ = d \cdot q^+ + 0$, and since 0 < d, we are also done.

Problem 4.20 Recall from p.83 that for natural numbers n and k, one has $k \in n \iff k \in n^+$. By taking the negations of these statements and using trichotomy, one also gets that $n \in k \iff n^+ \in k$. We will use this fact in the following proof.

Suppose A is a nonempty subset of ω and $\bigcup A = A$. To prove $A = \omega$, we show that A is inductive. Base case: Since A is nonempty, there is some natural number $k \in A$. Either k = 0, in which case we have $0 \in A$ as desired. Otherwise, $0 \in k \in A$, hence $0 \in \bigcup A = A$. Induction step: Suppose $n \in A$. Then, since $A = \bigcup A$, we have $n \in \bigcup A$, which implies $n \in k$ for some $k \in A$. Since A is a set of natural numbers, k is a natural number. By the above observation, we have $n^+ \in k$. There are two cases: Case 1: $n^+ = k$, thus $n^+ \in A$ and we are done. Case 2: $n^+ \in k \in A$, hence $n^+ \in \bigcup A = A$, and again we are done. Thus A is inductive, hence $A = \omega$.

Problem 4.26 We proceed by induction on n. Let

 $T = \{n \in \omega \mid \text{for all } f : n^+ \to \omega, \text{ran } f \text{ has a largest element} \}.$

We will show that T is inductive. First consider any $f: 0^+ \to \omega$. Since $0^+ = \{0\}$ is a singleton, ran $f = \{f(0)\}$ has exactly one element, which is automatically largest. This takes care of the base case. Now suppose that $n \in T$. To show that $n^+ \in T$, consider any $f: n^{++} \to \omega$. We have to show that ran f has a largest element. Let $g = f|n^+$ be the restriction of f to n^+ ; thus $g: n^+ \to \omega$. By induction hypothesis, we know that ran g has a largest element, say, k. Also, ran $f = \operatorname{ran} g \cup \{f(n^+)\}$. We distinguish two cases: Case 1: $k < f(n^+)$. In this case, $f(n^+)$ is the largest element of ran f. Case 2: $f(n^+) \leq k$. In this case, k is the largest element of ran f. In either case, ran f has a largest element, and since f was arbitrary, it follows that $n^+ \in T$. Thus, T is inductive, which proves the claim.

Lemma. If $n, k \in \omega$ and $n \subseteq k$, then there exists $x \in \omega$ with k = x + n.

Proof. By induction on k. If k = 0 then $n \leq k$ implies n = 0, and we can take x = 0. For the induction step, suppose the claim holds for k, and suppose $n \leq k^+$. Then either $n = k^+$, in which case one can take x = 0. Or otherwise $n \in k^+$, thus $n \leq k$, and we can find x with k = x + n by induction hypothesis. Then $k^+ = x^+ + n$, and we are done.

Problem 4.37

(a) For fixed m, n ∈ ω, define the set M = {k ∈ m + n | k ∉ n}. We claim that M has m elements. Let φ : m → M be the map that is defined by φ(x) = x + n. We must show that φ is a well-defined map, and that it is a bijection. To see that φ is well-defined, we must check that x + n ∈ M for all x ∈ m. Note that if x ∈ m, then x + n ∈ m + n by Theorem 4N. Also, x ∉ 0 and thus x + n ∉ 0 + n = n, again by Theorem 4N. Thus, x + n ∈ M, and φ is well-defined. Also, φ is one-to-one by Corollary 4P. To see that φ is onto M, take any k ∈ M. Then k ∉ n, thus n ⊆ k by trichotomy. By the Lemma, there exists x ∈ ω with k = x + n. Since k = x + n ∈ m + n, it follows that x ∈ m by Theorem 4N, thus k = φ(x). This shows that φ is onto.

Notice that M and n are disjoint, by definition of M. We claim that $m + n = M \cup n$. For the right-to-left inclusion, notice that $M \subseteq m + n$ by definition. Also, $0 \in m$, thus $n = n + 0 \in n + m$ by Theorem 4N and Corollary 4P, thus $n \subseteq n + m$ by Corollary 4M. So we have $M \cup n \subseteq m + n$. For the left-to-right inclusion, take any $k \in m + n$. In case $k \in n$, we are done, otherwise $k \notin n$, which implies $k \in M$. This shows $m + n \subseteq M \cup n$.

Now we show the claim of part (a). Assume A, B are disjoint of m, respectively n, elements. Let $f: m \to A$ and $g: n \to B$ be bijections, and let $\phi: m \to M$ be the bijection from above. Let $h: M \to A$ be the bijection given by $h = f \circ \phi^{-1}$. Using the fact that M and n are disjoint and that A and B are disjoint, it follows easily that $h \cup g: M \cup n \to A \cup B$ is a bijection. From $m + n = M \cup n$, it follows that $A \cup B$ has m + n elements.

(b) We first claim that m × n has m ⋅ n elements. Define ψ : m × n → m ⋅ n by ψ(x, y) = x ⋅ n + y. We claim that ψ is well-defined, and that it is a bijection. For well-definedness, we must check that ψ(x, y) ∈ m ⋅ n whenever x ∈ m and y ∈ n. But x ∈ m implies x⁺ ⊆ m, and thus x⁺ ⋅ n ⊆ m ⋅ n. The last step follows by Theorem 4N, if n ≠ 0, and by (M1) if n = 0. Now y ∈ n implies x ⋅ n + y ∈ x ⋅ n + n = x⁺ ⋅ n ⊆ m ⋅ n. Thus ψ(x, y) ∈ m ⋅ n, and ψ is well-defined.

To show that ψ is one-to-one, assume that $\psi(x, y) = \psi(x', y')$ for some $x, x' \in m$ and $y, y' \in n$. Then $x \cdot n + y = x' \cdot n + y'$. We must show x = x' and y = y'. First, assume (for the sake of deriving a contradiction) that $x \neq x'$. Then either $x \in x'$ or $x' \in x$ by trichotomy; we may assume without loss of generality that $x \in x'$. It follows that $x^+ \in x'$, thus $x^+ \cdot n \in x' \cdot n$. This implies $x \cdot n + y \in x \cdot n + n = x^+ \cdot n \in x' \cdot n \in x' \cdot n + y'$, contradicting $x \cdot n + y = x' \cdot n + y'$. Thus, it follows that x = x'. Now from $x \cdot n + y = x \cdot n + y'$ we can get y = y' by cancellation (Cor. 4P).

Next, we show that ψ is onto $m \cdot n$. If n = 0, then this is trivial, since $m \cdot n = 0$ in this case. Thus, assume $n \neq 0$ and take any $k \in m \cdot n$. By Problem 4.19, there exist numbers x and y such that $k = x \cdot n + y$ and $y \in n$. We have $x \cdot n \subseteq k \in m \cdot n$, and thus $x \in m$ by Theorem 4N. It follows that $k = \psi(x, y)$. Thus ψ is a bijection. Finally, we show the claim of part (b). Assume A has m elements and B has n elements. Let $f : m \to A$ and $g : n \to B$ be bijections. Define $h : m \times n \to A \times B$ by $h(\langle x, y \rangle) = \langle f(x), g(y) \rangle$. One checks easily that h is a bijection. Then $h \circ \psi^{-1}$ is a bijection $m \cdot n \to A \times B$, which proves that $A \times B$ has $m \cdot n$ elements.

Here is an alternative, easier proof of Problem 4.37 which uses induction.

- (a) We show this claim by induction on n. If n = 0, then B = Ø, and hence A ∪ B = A has m = m + n elements. For the induction step, assume the claim holds for n. Suppose A has m elements, B has n⁺ elements, and A and B are disjoint. Then there exists some one-to-one and onto function f : n⁺ → B. Let B' = f[[n]]; then clearly B = B' ∪ f(n) and this union is disjoint. Moreover, the function f|_n : n → B is one-to-one and onto B', so that B' has n elements. Since B' is still disjoint from A, the set A ∪ B' has m + n elements by induction hypothesis. Thus, there is some one-to-one and onto function g : m + n → A ∪ B'. Let h = g ∪ ⟨m + n, f(n)⟩, then h is a one-to-one function of m + n⁺ onto A ∪ B, as desired.
- (b) Again, we show the claim by induction on n. If n = 0, then B = Ø, and hence A × B = Ø, which has 0 = m ⋅ n elements. For the induction step, assume the claim holds for n. Suppose A has m elements and B has n⁺ elements. Then there exists some one-to-one and onto function f : n⁺ → B. As before, let B' = f[[n]]; then again B = B' ∪ f(n), this union is disjoint, and B' has n elements. By induction hypothesis, A × B' has m ⋅ n elements. Since A has m elements, and the set A is in one-to-one correspondence with the set A × {f(n)}, the latter set also has m elements. One also has A × B = A × B' ∪ A × {f(n)} (by Problem 3.2(a)), moreover, the latter union is disjoint, and so by (a), A × B has m ⋅ n + m = m ⋅ n⁺ elements, as desired.

Problem 5.1 through 5.3 We must check whether each of the following functions from $\omega \times \omega$ to $\omega \times \omega$ is compatible with the relation \sim , which was defined by $\langle m, n \rangle \sim \langle m', n' \rangle$ iff m + n' = m' + n.

$$\begin{split} f(\langle m,n\rangle) &= \langle m+n,n\rangle,\\ g(\langle m,n\rangle) &= \langle m,m\rangle,\\ h(\langle m,n\rangle) &= \langle n,m\rangle. \end{split}$$

The function f is not compatible: for instance $(0,0) \sim (1,1)$, but $(0+0,0) \not \sim (1+1,1)$. The function g is trivially compatible, because for all m, m', one has $(m, m) \sim (m', m')$. The function h is also compatible, because $(m, n) \sim (m', n')$ implies m + n' = m' + n implies n + m' = n' + m implies $(n, m) \sim (n', m')$.

Problem 5.7 Let $a = [\langle x, y \rangle]$ and $b = [\langle w, z \rangle]$. Then

$$\begin{array}{rcl} a \cdot_{\mathbb{Z}} (-b) &=& [\langle x, y \rangle] \cdot_{\mathbb{Z}} (-[\langle w, z \rangle]) \\ &=& [\langle x, y \rangle] \cdot_{\mathbb{Z}} [\langle z, w \rangle] \\ &=& [\langle xz + yw, xw + yz \rangle], \\ (-a) \cdot_{\mathbb{Z}} b &=& (-[\langle x, y \rangle]) \cdot_{\mathbb{Z}} [\langle w, z \rangle] \\ &=& [\langle y, x \rangle] \cdot_{\mathbb{Z}} [\langle w, z \rangle] \\ &=& [\langle yw + xz, yz + xw \rangle] \\ &=& [\langle xz + yw, xw + yz \rangle], \\ -(a \cdot_{\mathbb{Z}} b) &=& -([\langle x, y \rangle] \cdot_{\mathbb{Z}} [\langle w, z \rangle]) \\ &=& -([\langle xw + yz, xz + yw \rangle]) \\ &=& [\langle xz + yw, xw + yz \rangle]. \end{array}$$