MATH/CSCI 2112, DISCRETE STRUCTURES I, FALL 2005 Handout 3: Natural Deduction for Quantifiers

In the above rules:

- in $\forall E$ and $\exists I, t$ is any term.
- in ∀I and ∃E, u is a *fresh variable*. Here "fresh" means that this variable does not occur anywhere else in the derivation. It may only occur in the subderivation from lines m-n. The "u" that is written between the vertical lines on line m is called a *guard* it serves as a reminder that u must be fresh in this subderivation. In particular, this means that no formula containing u can be imported (repeated) into lines m-n from outside lines m-n. Also, this means that u cannot occur in the formula φ in lines n and n + 1 of ∃E.
- in all rules, A(u) means $S_u^x A$ (substitution of variable u for free variable x), and A(t) means $S_t^x A$ (substitution of term t for free variable x). In all substitutions for a free variable, you must change the name of any bound variables, if necessary, to avoid capture of variables within a quantifier's scope, if that could occur. It often helps to standardize the variables apart before doing a substitution.

Examples.

1	$\forall x$	(A($x) \to B(x))$	
2		$\exists y$	A(y)	
3		u	A(u)	
4			$\forall x (A(x) \longrightarrow B(x))$	R , 1
5			$A(u) \longrightarrow B(u)$	$\forall E, 4$
6			B(u)	→E, 3, 5
7			$\exists y B(y)$	∃I, 6
8		$\exists y$	B(y)	∃E, 2, 3–7
9	$\exists y$	$A(\iota$	$(u) \rightarrow \exists y B(y)$	→I, 2–8

1		$\forall x P(x, x)$		
2		u	$\forall x P(x, x)$	R , 1
3			P(u, u)	$\forall E, 2$
4			$\exists z P(u, z)$	∃I, 3
5		$\forall y$	$\exists z P(y,z)$	∀I, 2–4
6	$\forall x$	P(x	$(x, x) \longrightarrow \forall y \exists z P(y, z)$	\rightarrow I, 1–5

Non-examples. Non-example 1

1	$\forall x$	$(A(x) \rightarrow B(x))$	
2		$\exists y A(y)$	
3		u A(u)	
4		$\forall x (A(x) \to B(x))$	R , 1
5		$A(u) \longrightarrow B(u)$	$\forall E, 4$
6		B(u)	\rightarrow E, 3, 5
7		B(u)	∃E, 2, 3–6
8	$\exists y A(y) \longrightarrow B(u)$		→I, 2–7

Non-example 2

1		$\forall x$	P(x,x)	
2		P((u, u)	∀ E , 1
3		u	P(u, u)	R , 2
4			$\exists z P(u, z)$	∃I, 3
5		$\forall y$	$\exists z P(y, z)$	∀I, 2–4
6	$\forall x$	P(x	$(x, x) \longrightarrow \forall y \exists z P(y, z)$	\rightarrow I, 1–5

Non-example 3

1	$\forall x (A(x) \to \exists y B(x, y))$	
2	A(y)	
3	$A(y) \longrightarrow \exists y B(y,y)$	$\forall E, 1$
4	$\exists yB(y,y)$	\rightarrow E, 2, 3

WRONG, because u is not fresh in lines 3–6 (u must not occur in lines 6,7,8).

WRONG, because u is not fresh in lines 3–4 (u cannot be repeated past the guard from line 2 to line 3).

WRONG, because the substitution in line 3 impropertly captured the variable y in the scope of a quantifier.

CORRECT, because now the variable y does not get captured in the substitution in line 4.

Problems.

Problem 1 Prove the following in natural deduction:

(a)
$$Q \rightarrow \forall x P(x) \equiv \forall x (Q \rightarrow P(x))$$
 — assume that x does not occur in Q .
(b) $\sim \exists x P(x) \equiv \forall y \sim P(y)$.
(c) $\forall x P(x) \land \forall x Q(x) \equiv \forall x (P(x) \land Q(x))$.
(d) $\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$.
(e) $\exists x \forall y P(x, y) \vdash \forall y \exists x P(x, y)$.
(f) $\exists x \forall y P(x, y) \vdash \forall y \exists x P(x, y)$.
(g) $\exists x P(x) \lor \exists x Q(x) \equiv \exists x (P(x) \lor Q(x))$.
(h) $\exists x (P(x) \land Q(x)) \vdash \exists x P(x) \land \exists x Q(x)$.
(i) $\exists x P(x, x) \vdash \exists y \exists z P(y, z)$.
(j) $\forall x (A(x) \rightarrow B(x)) \vdash \exists x \sim B(x) \rightarrow \exists x \sim A(x)$.
(k) $\sim \exists x (A(x) \land B(x)) \equiv \forall x (A(x) \rightarrow \sim B(x))$.
(l) $\exists x \forall y P(x, y, x) \vdash \exists x \forall y \exists z P(x, y, z)$.
(m) $\vdash \forall x (P(x) \rightarrow \exists y P(y))$.
(n) $\vdash \forall x (\forall y P(y) \rightarrow P(x))$.
(o) $\forall x P(x) \vdash \exists x P(x)$.
(p) $\forall x (A(x) \rightarrow B(x)), \forall y (B(y) \rightarrow C(y)) \vdash \forall z (A(z) \rightarrow C(z))$.
(q) $\exists x A(x), \forall x (A(x) \rightarrow B(x)) \vdash \exists x (A(x) \land B(x))$.
(r) $\forall x A(x), \exists x (A(x) \rightarrow B(x)) \vdash \exists x (A(x) \land B(x))$.
(s) $\sim \exists x (A(x) \lor B(x)) \equiv \forall x \land y (P(x) \rightarrow Q(y))$.

Problem 2 Prove the following by natural deduction. Note: each of these problems requires the $\sim \sim$ -elimination rule.

(u) $Q \to \exists x P(x) \equiv \exists x (Q \to P(x))$ — assume that x does not occur in Q.

$$\begin{aligned} &(\mathbf{v}) \sim \forall x \, P(x) \equiv \exists y \sim P(y). \\ &(\mathbf{w}) \ \exists x \, (A(x) \land B(x)) \equiv \sim \forall x \, (A(x) \to \sim B(x)). \\ &(\mathbf{x}) \vdash \exists x (\exists y \, P(y) \to P(x)). \\ &(\mathbf{y}) \ \sim \forall x (A(x) \land B(x)) \equiv \exists x \sim A(x) \lor \exists x \sim B(x). \end{aligned}$$

(z)
$$\forall x P(x) \rightarrow \exists y Q(y) \equiv \exists x \exists y (P(x) \rightarrow Q(y)).$$

Problem 3 Prove the equivalences in Problem 1 (a), (b), (c), (g), (k), (s), (t) and Problem 2 (u), (v), (w), (y), (z) by the laws of statement algebra.

Problem 4 In Problem 1 (d), (e), (f), (h), (i), (j), (l), (o), (p), (q), (r), prove that the converse direction does not hold by giving a counterexample.