MATH/CSCI 2112, DISCRETE STRUCTURES I, FALL 2005

Handout 3: Natural Deduction for Quantifiers

Rules.

Forall-elimination $(\forall \mathbf{E})$

Exists-Introduction $(\exists \mathbf{I})$

Exists-Elimination ($\exists \mathbf{E}$)

In the above rules:

- in $\forall \mathrm{E}$ and $\exists \mathrm{I}, t$ is any term.
- in $\forall \mathrm{I}$ and $\exists \mathrm{E}, u$ is a fresh variable. Here "fresh" means that this variable does not occur anywhere else in the derivation. It may only occur in the subderivation from lines $m-n$. The " u " that is written between the vertical lines on line m is called a guard - it serves as a reminder that u must be fresh in this subderivation. In particular, this means that no formula containing u can be imported (repeated) into lines $m-n$ from outside lines $m-n$. Also, this means that u cannot occur in the formula φ in lines n and $n+1$ of $\exists E$.
- in all rules, $A(u)$ means $S_{u}^{x} A$ (substitution of variable u for free variable x), and $A(t)$ means $S_{t}^{x} A$ (substitution of term t for free variable x). In all substitutions for a free variable, you must change the name of any bound variables, if necessary, to avoid capture of variables within a quantifier's scope, if that could occur. It often helps to standardize the variables apart before doing a substitution.

Examples.

1		$\forall x P(x, x)$	
2	u	$\forall x P(x, x)$	R, 1
3		$P(u, u)$	$\forall \mathrm{E}, 2$
4		$\exists z P(u, z)$	$\exists \mathrm{I}, 3$
5		$P(y, z)$	$\forall \mathrm{I}, 2-4$
6	$\forall x P($	$x) \rightarrow \forall y \exists$	$\rightarrow \mathrm{I}, 1-5$

Non-examples.
Non-example 1

1	$\forall x(A$	$x) \rightarrow B(x))$	
2	$\exists y A(y)$		
3	u	$A(u)$	
4		$\forall x(A(x) \rightarrow B(x))$	R, 1
5		$A(u) \rightarrow B(u)$	$\forall \mathrm{E}, 4$
6		$B(u)$	$\rightarrow \mathrm{E}, 3,5$
7			ヨE, 2, 3-6
8	$\exists y$ A (1)	$) \rightarrow B(u)$	$\rightarrow \mathrm{I}, 2-7$

Non-example 2

1	$\forall x P(x, x)$	
2	$P(u, u)$	$\forall \mathrm{E}, 1$
3	$u \mid P(u, u)$	R, 2
4	$\exists z P(u, z)$	$\exists \mathrm{I}, 3$
5	$\forall y \exists z P(y, z)$	$\forall \mathrm{I}, 2-4$
6	$\forall x P(x, x) \rightarrow \forall y \exists z P(y, z)$	$\rightarrow \mathrm{I}, 1-5$

Non-example 3

1	$\forall x(A(x) \rightarrow \exists y B(x, y))$	
2	$A(y)$	
3	$A(y) \rightarrow \exists y B(y, y)$	$\forall \mathrm{E}, 1$
4	$\exists y B(y, y)$	$\rightarrow \mathrm{E}, 2,3$

1	$\forall x(A(x) \rightarrow \exists y B(x, y))$	
2	$A(y)$	
3	$\forall x(A(x) \rightarrow \exists z B(x, z))$	rename bound variables, 1
4	$A(y) \rightarrow \exists z B(y, z)$	$\forall \mathrm{E}, 1$
5	$\exists z B(y, z)$	$\rightarrow \mathrm{E}, 2,4$

WRONG, because u is not fresh in lines 3-6 (u must not occur in lines 6,7,8).

WRONG, because u is not fresh in lines 3-4 (u cannot be repeated past the guard from line 2 to line 3).

WRONG, because the substitution in line 3 impropertly captured the variable y in the scope of a quantifier.

CORRECT, because now the variable y does not get captured in the substitution in line 4.

Problems.

Problem 1 Prove the following in natural deduction:
(a) $Q \rightarrow \forall x P(x) \equiv \forall x(Q \rightarrow P(x))$ - assume that x does not occur in Q.
(b) $\sim \exists x P(x) \equiv \forall y \sim P(y)$.
(c) $\forall x P(x) \wedge \forall x Q(x) \equiv \forall x(P(x) \wedge Q(x))$.
(d) $\forall x P(x) \vee \forall x Q(x) \vdash \forall x(P(x) \vee Q(x))$.
(e) $\exists x \forall y P(x, y) \vdash \forall y \exists x P(x, y)$.
(f) $\exists x \forall y P(x, y) \vdash \exists z P(z, z)$.
(g) $\exists x P(x) \vee \exists x Q(x) \equiv \exists x(P(x) \vee Q(x))$.
(h) $\exists x(P(x) \wedge Q(x)) \vdash \exists x P(x) \wedge \exists x Q(x)$.
(i) $\exists x P(x, x) \vdash \exists y \exists z P(y, z)$.
(j) $\forall x(A(x) \rightarrow B(x)) \vdash \exists x \sim B(x) \rightarrow \exists x \sim A(x)$.
$(\mathrm{k}) \sim \exists x(A(x) \wedge B(x)) \equiv \forall x(A(x) \rightarrow \sim B(x))$.
(1) $\exists x \forall y P(x, y, x) \vdash \exists x \forall y \exists z P(x, y, z)$.
$(\mathrm{m}) \vdash \forall x(P(x) \rightarrow \exists y P(y))$.
(n) $\vdash \forall x(\forall y P(y) \rightarrow P(x))$.
(o) $\forall x P(x) \vdash \exists x P(x)$.
(p) $\forall x(A(x) \rightarrow B(x)), \forall y(B(y) \rightarrow C(y)) \vdash \forall z(A(z) \rightarrow C(z))$.
(q) $\exists x A(x), \forall x(A(x) \rightarrow B(x)) \vdash \exists x(A(x) \wedge B(x))$.
(r) $\forall x A(x), \exists x(A(x) \rightarrow B(x)) \vdash \exists x(A(x) \wedge B(x))$.
(s) $\sim \exists x(A(x) \vee B(x)) \equiv \forall x \sim A(x) \wedge \forall x \sim B(x)$.
(t) $\exists x P(x) \rightarrow \forall y Q(y) \equiv \forall x \forall y(P(x) \rightarrow Q(y))$.

Problem 2 Prove the following by natural deduction. Note: each of these problems requires the $\sim \sim$-elimination rule.
(u) $Q \rightarrow \exists x P(x) \equiv \exists x(Q \rightarrow P(x))$ - assume that x does not occur in Q.
(v) $\sim \forall x P(x) \equiv \exists y \sim P(y)$.
(w) $\exists x(A(x) \wedge B(x)) \equiv \sim \forall x(A(x) \rightarrow \sim B(x))$.
$(\mathrm{x}) \vdash \exists x(\exists y P(y) \rightarrow P(x))$.
$(\mathrm{y}) \sim \forall x(A(x) \wedge B(x)) \equiv \exists x \sim A(x) \vee \exists x \sim B(x)$.
(z) $\forall x P(x) \rightarrow \exists y Q(y) \equiv \exists x \exists y(P(x) \rightarrow Q(y))$.

Problem 3 Prove the equivalences in Problem 1 (a), (b), (c), (g), (k), (s), (t) and Problem 2 (u), (v), (w), (y), (z) by the laws of statement algebra.

Problem 4 In Problem 1 (d), (e), (f), (h), (i), (j), (l), (o), (p), (q), (r), prove that the converse direction does not hold by giving a counterexample.

