
Specifically, Felleisen’s interpretation requires a term of the form

M = C(λkA→B .N) : A

to be evaluated as follows. To evaluate M , first evaluate N . Note that both M and
N have type A. If N returns a result, then this immediately becomes the result of
M as well. On the other hand, if during the evaluation of N , the function k is ever
called with some argument x : A, then the further evaluation of N is aborted, and
x immediately becomes the result of M .

In other words, the final result of M can be calculated anywhere inside N , no
matter how deeply nested, by passing it to k as an argument. The function k is
known as a continuation.

There is a lot more to programming with continuations than can be explained in
these lecture notes. For an interesting application of continuations to compiling,
see e.g. [9] from the bibliography (Section 1.8). The above explanation of what
it means to “evaluate” the term M glosses over several details. In particular, we
have not given a reduction rule for C in the style of β-reduction. To do so is rather
complicated and is beyond the scope of these notes.

7 Polymorphism

The polymorphic lambda calculus, also known as “System F”, is obtained extend-
ing the Curry-Howard isomorphism to the quantifier ∀. For example, consider the
identity function λxA.x. This function has type A → A. Another identity func-
tion is λxB .x of type B → B, and so forth for every type. We can thus think of
the identity function as a family of functions, one for each type. In the polymor-
phic lambda calculus, there is a dedicated syntax for such families, and we write
Λα.λxα.x of type ∀α.α → α. Please read Chapter 11 of “Proofs and Types” by
Girard, Lafont, and Taylor [2].

8 Weak and strong normalization

8.1 Definitions

As we have seen, computing with lambda terms means reducing lambda terms to
normal form. By the Church-Rosser theorem, such a normal form is guaranteed

66

to be unique if it exists. But so far, we have paid little attention to the question
whether normal forms exist for a given term, and if so, how we need to reduce the
term to find a normal form.

Definition. Given a notion of term and a reduction relation, we say that a term M
is weakly normalizing if there exists a finite sequence of reductions M → M1 →
. . . → Mn such that Mn is a normal form. We say that M is strongly normalizing
if there does not exist an infinite sequence of reductions starting from M , or in
other words, if every sequence of reductions starting from M is finite.

Recall the following consequence of the Church-Rosser theorem, which we stated
as Corollary 4.2: If M has a normal form N , then M →→ N . It follows that a
term M is weakly normalizing if and only if it has a normal form. This does not
imply that every possible way of reducing M leads to a normal form. A term is
strongly normalizing if and only if every way of reducing it leads to a normal form
in finitely many steps.

Consider for example the following terms in the untyped lambda calculus:

1. The term Ω = (λx.xx)(λx.xx) is neither weakly nor strongly normalizing.
It does not have a normal form.

2. The term (λx.y)Ω is weakly normalizing, but not strongly normalizing. It
reduces to the normal form y, but it also has an infinite reduction sequence.

3. The term (λx.y)((λx.x)(λx.x)) is strongly normalizing. While there are
several different ways to reduce this term, they all lead to a normal form in
finitely many steps.

4. The term λx.x is strongly normalizing, since it has no reductions, much
less an infinite reduction sequence. More generally, every normal form is
strongly normalizing.

We see immediately that strongly normalizing implies weakly normalizing. How-
ever, as the above examples show, the converse is not true.

8.2 Weak and strong normalization in typed lambda calculus

We found that the term Ω = (λx.xx)(λx.xx) is not weakly or strongly normaliz-
ing. On the other hand, we also know that this term is not typeable in the simply-
typed lambda calculus. This is not a coincidence, as the following theorem shows.

67

Theorem 8.1 (Weak normalization theorem). In the simply-typed lambda cal-
culus, all terms are weakly normalizing.

Theorem 8.2 (Strong normalization theorem). In the simply-typed lambda cal-
culus, all terms are strongly normalizing.

Clearly, the strong normalization theorem implies the weak normalization theo-
rem. However, the weak normalization theorem is much easier to prove, which
is the reason we proved both these theorems in class. In particular, the proof of
the weak normalization theorem gives an explicit measure of the complexity of
a term, in terms of the number of redexes of a certain degree in the term. There
is no corresponding complexity measure in the proof of the strong normalization
theorem.

Theorem 8.3 (Strong normalization theorem for System F). In the polymor-
phic lambda calculus (System F), all terms are strongly normalizing.

Please refer to Chapters 4, 6, and 14 of “Proofs and Types” by Girard, Lafont, and
Taylor [2] for the proofs of Theorems 8.1, 8.2, and 8.3, respectively.

9 Denotational semantics

We introduced the lambda calculus as the “theory of functions”. But so far, we
have only spoken of functions in abstract terms. Do lambda terms correspond to
any actual functions, such as, functions in set theory? And what about the notions
of β- and η-equivalence? We intuitively accepted these concepts as expressing
truths about the equality of functions. But do these properties really hold of real
functions? Are there other properties that functions have that that are not captured
by βη-equivalence?

The word “semantics” comes from the Greek word for “meaning”. Denotational
semantics means to give meaning to a language by interpreting its terms as math-
ematical objects. This is done by describing a function that maps syntactic objects
(e.g., types, terms) to semantic objects (e.g., sets, elements). This function is
called an interpretation or meaning function, and we usually denote it by [[−]].
Thus, if M is a term, we will usually write [[M]] for the meaning of M under a
given interpretation.

Any good denotational semantics should be compositional, which means, the in-
terpretation of a term should be given in terms of the interpretations of its sub-
terms. Thus, for example, [[MN]] should be a function of [[M]] and [[N]].

68

Suppose that we have an axiomatic notion of equality ' on terms (for instance,
βη-equivalence in the case of the lambda calculus). With respect to a particular
class of interpretations, soundness is the property

M ' N ⇒ [[M]] = [[N]] for all interpretations in the class.

Completeness is the property

[[M]] = [[N]] for all interpretations in the class ⇒ M ' N.

Depending on our viewpoint, we will either say the axioms are sound (with respect
to a given interpretation), or the interpretation is sound (with respect to a given set
of axioms). Similarly for completeness. Soundness expresses the fact that our ax-
ioms (e.g., β or η) are true with respect to the given interpretation. Completeness
expresses the fact that our axioms are sufficient.

9.1 Set-theoretic interpretation

The simply-typed lambda calculus can be given a straightforward set-theoretic
interpretation as follows. We map types to sets and typing judgments to functions.
For each basic type ι, assume that we have chosen a non-empty set Sι. We can
then associate a set [[A]] to each type A recursively:

[[ι]] = Sι

[[A → B]] = [[B]][[A]]

[[A × B]] = [[A]] × [[B]]
[[1]] = {∗}

Here, for two sets X, Y , we write Y X for the set of all functions from X to Y ,
i.e., Y X = {f | f : X → Y }. Of course, X × Y denotes the usual cartesian
product of sets, and {∗} is some singleton set.

We can now interpret lambda terms, or more precisely, typing judgments, as cer-
tain functions. Intuitively, we already know which function a typing judgment
corresponds to. For instance, the typing judgment x:A, f :A → B ` fx : B corre-
sponds to the function that takes an element x ∈ [[A]] and an element f ∈ [[B]][[A]] ,
and that returns f(x) ∈ [[B]]. In general, the interpretation of a typing judgment

x1:A1, . . . , xn:An ` M : B

will be a function
[[A1]] × . . . × [[An]] → [[B]].

69

Which particular function it is depends of course on the term M . For convenience,
if Γ = x1:A1, . . . , xn:An is a context, let us write [[Γ]] = [[A1]] × . . .× [[An]]. We
now define [[Γ ` M : B]] by recursion on M .

• If M is a variable, we define

[[x1:A1, . . . , xn:An ` xi : Ai]] = πi : [[A1]] × . . . × [[An]] → [[Ai]],

where πi(a1, . . . , an) = ai.

• If M = NP is an application, we recursively calculate

f = [[Γ ` N : A → B]] : [[Γ]] → [[B]][[A]] ,
g = [[Γ ` P : A]] : [[Γ]] → [[A]].

We then define
[[Γ ` NP : B]] = h : [[Γ]] → [[B]]

by h(ā) = f(ā)(g(ā)), for all ā ∈ [[Γ]].

• If M = λxA.N is an abstraction, we recursively calculate

f = [[Γ, x:A ` N : B]] : [[Γ]] × [[A]] → [[B]].

We then define

[[Γ ` λxA.N : A → B]] = h : [[Γ]] → [[B]][[A]]

by h(ā)(a) = f(ā, a), for all ā ∈ [[Γ]] and a ∈ [[A]].

• If M = 〈N, P 〉 is an pair, we recursively calculate

f = [[Γ ` N : A]] : [[Γ]] → [[A]],
g = [[Γ ` P : B]] : [[Γ]] → [[B]].

We then define

[[Γ ` 〈N, P 〉 : A × B]] = h : [[Γ]] → [[A]] × [[B]]

by h(ā) = (f(ā), g(ā)), for all ā ∈ [[Γ]].

70

• If M = πiN is a projection (for i = 1, 2), we recursively calculate

f = [[Γ ` N : B1 × B2]] : [[Γ]] → [[B1]] × [[B2]].

We then define
[[Γ ` πi : Bi]] = h : [[Γ]] → [[Bi]]

by h(ā) = πi(f(ā)), for all ā ∈ [[Γ]]. Here πi in the meta-language denotes
the set-theoretic function πi : [[B1]] × [[B2]] → [[Bi]] given by πi(b1, b2) =
bi.

• If M = ∗, we define

[[Γ ` ∗ : 1]] = h : [[Γ]] → {∗}

by h(ā) = ∗, for all ā ∈ [[Γ]].

To minimize notational inconvenience, we will occasionally abuse the notation
and write [[M]] instead of [[Γ ` M : B]], thus pretending that terms are typing
judgments. However, this is only an abbreviation, and it will be understood that
the interpretation really depends on the typing judgment, and not just the term,
even if we use the abbreviated notation.

9.2 Soundness

Lemma 9.1 (Context change). The interpretation behaves as expected under
reordering of contexts and under the addition of dummy variables to contexts.
More precisely, if σ : {1, . . . , n} → {1, . . . , m} is an injective map, and if the
free variables of M are among xσ1, . . . , xσn, then the interpretations of the two
typing judgments,

f = [[x1:A1, . . . , xm:Am ` M : B]] : [[A1]] × . . . × [[Am]] → [[B]],
g = [[xσ1:Aσ1, . . . , xσn:Aσn ` M : B]] : [[Aσ1]] × . . . × [[Aσn]] → [[B]]

are related as follows:

f(a1, . . . , am) = g(aσ1, . . . , aσn),

for all a1 ∈ [[A1]], . . . , am ∈ [[Am]].

Proof. Easy, but tedious, induction on M . �

71

The significance of this lemma is that, to a certain extent, the context does not
matter. Thus, if the free variables of M and N are contained in Γ as well as Γ′,
then we have

[[Γ ` M : B]] = [[Γ ` N : B]] iff [[Γ′ ` M : B]] = [[Γ′ ` N : B]].

Thus, whether M and N have equal denotations only depends on M and N , and
not on Γ.

Lemma 9.2 (Substitution Lemma). If

[[Γ, x:A ` M : B]] = f : [[Γ]] × [[A]] → [[B]] and
[[Γ ` N : A]] = g : [[Γ]] → [[A]],

then
[[Γ ` M [N/x] : B]] = h : [[Γ]] → [[B]],

where h(ā) = f(ā, g(ā)), for all ā ∈ [[Γ]].

Proof. Very easy, but very tedious, induction on M . �

Proposition 9.3 (Soundness). The set-theoretic interpretation is sound for βη-
reasoning. In other words,

M =βη N ⇒ [[Γ ` M : B]] = [[Γ ` N : B]].

Proof. Let us write M ∼ N if [[Γ ` M : B]] = [[Gamma ` N : B]]. By the
remark after Lemma 9.1, this notion is independent of Γ, and thus a well-defined
relation on terms (as opposed to typing judgments). To prove soundness, we must
show that M =βη N implies M ∼ N , for all M and N . It suffices to show that
∼ satisfies all the axioms of βη-equivalence.

The axioms (refl), (symm), and (trans) hold trivially. Similarly, all the (cong) and
(ξ) rules hold, due to the fact that the meaning of composite terms was defined
solely in terms of the meaning of their subterms. It remains to prove that each of
the various (β) and (η) laws is satisfied (see page 57). We prove the rule (β→) as
an example; the remaining rules are left as an exercise.

Assume Γ is a context such that Γ, x:A ` M : B and Γ ` N : A. Let

f = [[Γ, x:A ` M : B]] : [[Γ]] × [[A]] → [[B]],
g = [[Γ ` N : A]] : [[Γ]] → [[A]],
h = [[Γ ` (λxA.M) : A → B]] : [[Γ]] → [[B]][[A]] ,
k = [[Γ ` (λxA.M)N : B]] : [[Γ]] → [[B]],
l = [[Γ ` M [N/x] : B]] : [[Γ]] → [[B]].

72

We must show k = h. By definition, we have k(ā) = h(ā)(g(ā)) = f(ā, g(ā)).
On the other hand, l(ā) = f(ā, g(ā)) by the substitution lemma. �

Note that the proof of soundness amounts to a simple calculation; while there are
many details to attend to, no particularly interesting new idea is required. This
is typical of soundness proofs in general. Completeness, on the other hand, is
usually much more difficult to prove and often requires clever ideas.

9.3 Completeness

We cite two completeness theorems for the set-theoretic interpretation. The first
one is for the class of all models with finite base type. The second one is for the
single model with one countably infinite base type.

Theorem 9.4 (Completeness, Plotkin, 1973). The class of set-theoretic models
with finite base types is complete for the lambda-βη calculus.

Recall that completeness for a class of models means that if [[M]] = [[N]] holds in
all models of the given class, then M =βη N . This is not the same as complete-
ness for each individual model in the class.

Note that, for each fixed choice of finite sets as the interpretations of the base
types, there are some lambda terms such that [[M]] = [[N]] but M 6=βη N . For
instance, consider terms of type (ι → ι) → ι → ι. There are infinitely many
βη-distinct terms of this type, namely, the Church numerals. On the other hand,
if Sι is a finite set, then [[(ι → ι) → ι → ι]] is also a finite set. Since a finite
set cannot have infinitely many distinct elements, there must necessarily be two
distinct Church numerals M, N such that [[M]] = [[N]].

Plotkin’s completeness theorem, on the other hand, shows that whenever M and
N are distinct lambda terms, then there exist some set-theoretic model with finite
base types in which M and N are different.

The second completeness theorem is for a single model, namely the one where Sι

is a countably infinite set.

Theorem 9.5 (Completeness, Friedman, 1975). The set-theoretic model with
base type equal to N, the set of natural numbers, is complete for the lambda-βη
calculus.

We omit the proofs.

73

10 The language PCF

PCF stands for “programming with computable functions”. The language PCF is
an extension of the simply-typed lambda calculus with booleans, natural numbers,
and recursion. It was first introduced by Dana Scott as a simple programming lan-
guage on which to try out techniques for reasoning about programs. Although PCF
is not intended as a “real world” programming language, many real programming
languages can be regarded as (syntactic variants of) extensions of PCF, and many
of the reasoning techniques developed for PCF also apply to more complicated
languages.

PCF is a “programming language”, not just a “calculus”. By this we mean, PCF
is equipped with a specific evaluation order, or rules that determine precisely how
terms are to be evaluated. We follow the slogan:

Programming language = syntax + evaluation rules.

After introducting the syntax of PCF, we will look at three different equivalence
relations on terms.

• Axiomatic equivalence =ax will be given by axioms in the spirit of βη-
equivalence.

• Operational equivalence =op will be defined in terms of the operational
behavior of terms. Two terms are operationally equivalent if one can be
substituted for the other in any context without changing the behavior of a
program.

• Denotational equivalence =den is defined via a denotational semantics.

We will develop methods for reasoning about these equivalences, and thus for
reasoning about programs. We will also investigate how the three equivalences
are related to each other.

10.1 Syntax and typing rules

PCF types are simple types over two base types bool and nat .

A, B ::= bool nat A → B A × B 1

74

(true)
Γ ` T : bool

(false)
Γ ` F : bool

(zero)
Γ ` zero : nat

(succ) Γ ` M : nat
Γ ` succ (M) : nat

(pred) Γ ` M : nat
Γ ` pred (M) : nat

(iszero) Γ ` M : nat
Γ ` iszero (M) : bool

(fix) Γ ` M : A → A

Γ ` Y(M) : A

(if) Γ ` M : bool Γ ` N : A Γ ` P : A

Γ ` if M then N else P : A

Table 6: Typing rules for PCF

The raw terms of PCF are those of the simply-typed lambda calculus, together
with some additional constructs that deal with booleans, natural numbers, and
recursion.

M, N, P ::= x MN λxA.M 〈M, N〉 π1M π2M ∗

T F zero succ (M) pred (M)

iszero (M) if M then N else P Y(M)

The intended meaning of these terms is the same as that of the corresponding
terms we used to program in the untyped lambda calculus: T and F are the
boolean constants, zero is the constant zero, succ and pred are the successor
and predecessor functions, iszero tests whether a given number is equal to zero,
if M then N else P is a conditional, and Y(M) is a fixpoint of M .

The typing rules for PCF are the same as the typing rules for the simply-typed
lambda calculus, shown in Table 4, plus the additional typing rules shown in Ta-
ble 6.

10.2 Axiomatic equivalence

The axiomatic equivalence of PCF is based on the βη-equivalence of the simply-
typed lambda calculus. The relation =ax is the least relation given by the follow-
ing:

75

pred (zero) = zero
pred (succ (n)) = n

iszero (zero) = T

iszero (succ (n)) = F

if T then N else P = N
if F then N else P = P

Y(M) = M(Y(M))

Table 7: Axiomatic equivalence for PCF

• All the β- and η-axioms of the simply-typed lambda calculus, as shown on
page 57.

• One congruence or ξ-rule for each term constructor. This means, for in-
stance

M =ax M ′ N =ax N ′ P =ax P ′

if M then N else P =ax if M ′ then N ′ else P ′
,

and similar for all the other term constructors.

• The additional axioms shown in Table 7. Here, n stands for a numeral, i.e.,
a term of the form succ (. . . (succ (zero)) . . .).

10.3 Operational semantics

The operational semantics of PCF is commonly given in two different styles: the
small-step or shallow style, and the big-step or deep style. We give the small-step
semantics first, because it is closer to the notion of β-reduction that we considered
for the simply-typed lambda calculus.

There are some important differences between an operational semantics, as we
are going to give it here, and the notion of β-reduction in the simply-typed lambda
calculus. Most importantly, the operational semantics is going to be deterministic,
which means, each term can be reduced in at most one way. Thus, there will never
be a choice between more than one redex. Or in other words, it will always be
uniquely specified which redex to reduce next.

As a consequence of the previous paragraph, we will abandon many of the congru-
ence rules, as well as the (ξ)-rule. We adopt the following informal conventions:

76

• never reduce the body of a lambda abstraction,

• never reduce the argument of a function (except for primitive functions such
as succ and pred),

• never reduce the “then” or “else” part of an if-then-else statement,

• never reduce a term inside a pair.

Of course, the terms that these rules prevent from being reduced can neverthe-
less become subject to reduction later: the body of a lambda abstraction and the
argument of a function can be reduced after a β-reduction causes the λ to disap-
pear and the argument to be substituted in the body. The “then” or “else” parts
of an if-then-else term can be reduced after the “if” part evaluates to true or false.
And the terms inside a pair can be reduced after the pair has been broken up by a
projection.

An important technical notion is that of a value, which is a term that represents
the result of a computation and cannot be reduced further. Values are given as
follows:

Values: V, W ::= T F zero succ (V) ∗ 〈M, N〉 λxA.M

The transition rules for the small-step operational semantics of PCF are shown in
Table 8.

We write M → N if M reduces to N by these rules. We write M 6→ if there
does not exist N such that M → N . The first two important technical properties
of small-step reduction are summarized in the following lemma.

Lemma 10.1. 1. Values are normal forms. If V is a value, then V 6→.

2. Evalution is deterministic. If M → N and M → N ′, then N ≡ N ′.

Another important property is subject reduction: a well-typed term reduces only
to another well-typed term of the same type.

Lemma 10.2 (Subject Reduction). If Γ ` M : A and M → N , then Γ ` N : A.

Next, we want to prove that the evaluation of a well-typed term does not get
“stuck”. If M is some term such that M 6→, but M is not a value, then we
regard this as an error, and we also write M → error . Examples of such terms
are π1(λx.M) and 〈M, N〉P . The following lemma shows that well-typed closed
terms cannot lead to such errors.

77

M → N
pred (M) → pred (N)

pred (zero) → zero

pred (succ (V)) → V

M → N
iszero (M) → iszero (N)

iszero (zero) → T

iszero (succ (V)) → F

M → N
succ (M) → succ (N)

M → N
MP → NP

(λxA.M)N → M [N/x]

M → M ′

πiM → πiM
′

π1〈M, N〉 → M

π2〈M, N〉 → N

M : 1, M 6= ∗

M → ∗

M → M ′

if M then N else P → if M ′ then N else P

if T then N else P → N

if F then N else P → P

Y(M) → M(Y(M))

Table 8: Small-step operational semantics of PCF

Lemma 10.3 (Progress). If M is a closed, well-typed term, then either M is a
value, or else there exists N such that M → N .

The Progress Lemma is very important, because it implies that a well-typed term
cannot “go wrong”. It guarantees that a well-typed term will either evaluate to a
value in finitely many steps, or else it will reduce infinitely and thus not terminate.
But a well-typed term can never generate an error. In programming language
terms, a term that type-checks at compile-time cannot generate an error at run-
time.

To express this idea formally, let us write M →∗ N in the usual way if M reduces
to N in zero or more steps, and let us write M →∗ error if M reduces in zero or
more steps to an error.

Proposition 10.4 (Safety). If M is a closed, well-typed term, then M 6→∗ error .

Exercise 32. Prove Lemmas 10.1–10.3 and Proposition 10.4.

78

T ⇓ T

F ⇓ F

zero ⇓ zero

〈M, N〉 ⇓ 〈M, N〉

λxA.M ⇓ λxA.M

M ⇓ zero
pred (M) ⇓ zero

M ⇓ succ (V)

pred (M) ⇓ V

M ⇓ zero
iszero (M) ⇓ T

M ⇓ succ (V)

iszero (M) ⇓ F

M ⇓ V

succ (M) ⇓ succ (V)

M ⇓ λxA.M ′ M ′[N/x] ⇓ V

MN ⇓ V

M ⇓ 〈M1, M2〉 M1 ⇓ V

π1M ⇓ V

M ⇓ 〈M1, M2〉 M2 ⇓ V

π2M ⇓ V

M : 1

M ⇓ ∗

M ⇓ T N ⇓ V

if M then N else P ⇓ V

M ⇓ F P ⇓ V
if M then N else P ⇓ V

M(Y(M)) ⇓ V

Y(M) ⇓ V

Table 9: Big-step operational semantics of PCF

10.4 Big-step semantics

In the small-step semantics, if M →∗ V , we say that M evaluates to V . Note that
by determinacy, for every M , there exists at most one V such that M →∗ V .

It is also possible to axiomatize the relation “M evaluates to V ” directly. This is
known as the big-step semantics. Here, we write M ⇓ V if M evaluates to V .
The axioms for the big-step semantics are shown in Table 9.

The big-step semantics satisfies properties similar to those of the small-step se-
mantics.

Lemma 10.5. 1. Values. For all values V , we have V ⇓ V .

2. Determinacy. If M ⇓ V and M ⇓ V ′, then V ≡ V ′.

3. Subject Reduction. If Γ ` M : A and M ⇓ V , then Γ ` V : A.

79

The analogues of the Progress and Safety properties cannot be as easily stated for
big-step reduction, because we cannot easily talk about a single reduction step or
about infinite reduction sequences. However, some comfort can be taken in the
fact that the big-step semantics and small-step semantics coincide:

Proposition 10.6. M →∗ V iff M ⇓ V .

10.5 Operational equivalence

Informally, two terms M and N will be called operationally equivalent if M and
N are interchangeable as part of any larger program, without changing the ob-
servable behavior of the program. This notion of equivalence is also often called
observational equivalence, to emphasize the fact that it concentrates on observable
properties of terms.

What is an observable behavior of a program? Normally, what we observe about a
program is its output, such as the characters it prints to a terminal. Since any such
characters can be converted in principle to natural numbers, we take the point of
view that the observable behavior of a program is a natural number that it evaluates
to. Similarly, if a program computes a boolean, we regard the boolean value as
observable. However, we do not regard abstract values, such as functions, as
being directly observable, on the grounds that a function cannot be observed until
we supply it some arguments and observe the result.

Definition. An observable type is either bool or nat . A result is a closed value
of observable type. Thus, a result is either T, F, or n. A program is a closed term
of observable type

A context is a term with a hole, written C[−]. Formally, the class of contexts is
defined by a BNF:

C[−] ::= [−] x C[−]N MC[−] λxA.C[−] . . .

and so on, extending through all the cases in the definition of a PCF term.

Well-typed contexts are defined in the same way as well-typed terms, where it
is understood that the hole also has a type. The free variables of a context are
defined in the same way as for terms. Moreover, we define the captured variables
of a context to be those bound variables whose scope includes the hole. So for
instance, in the context (λx.[−])(λy.z), the variable x is captured, the variable z
is free, and y is neither free nor captured.

80

If C[−] is a context and M is a term of the appropriate type, we write C[M] for
the result of replacing the hole in the context C[−] by M . Here, we do not α-
rename any bound variables, so that we allow free variables of M to be captured
by C[−].

We are now ready to state the definition of operational equivalence.

Definition. Two terms M, N are operationally equivalent, in symbols M =op N ,
if for all closed and closing context C[−] of observable type and all values V ,

C[M] ⇓ V ⇐⇒ C[N] ⇓ V.

Here, by a closing context we mean that C[−] should capture all the free variables
of M and N . This is equivalent to requiring that C[M] and C[N] are closed terms
of observable types, i.e., programs. Thus, two terms are equivalent if they can be
used interchangeably in any program.

10.6 Operational approximation

As a refinement of operational equivalence, we can also define a notion of opera-
tional approximation: We say that M operationally approximates N , in symbols
M vop N , if for all closed and closing contexts C[−] of observable type and all
values V ,

C[M] ⇓ V ⇒ C[N] ⇓ V.

Note that this definition includes the case where C[M] diverges, but C[N] con-
verges, for some N . This formalizes the notion that N is “more defined” than M .
Clearly, we have M =op N iff M vop N and N vop M . Thus, we get a partial
order vop on the set of all terms of a given type, modulo operational equivalence.
Also, this partial order has a least element, namely if we let Ω = Y(λx.x), then
Ω vop N for any term N of the appropriate type.

Note that, in general, vop is not a complete partial order, due to missing limits of
ω-chains.

10.7 Discussion of operational equivalence

Operational equivalence is a very useful concept for reasoning about programs,
and particularly for reasoning about program fragments. If M and N are opera-
tionally equivalent, then we know that we can replace M by N in any program

81

without affecting its behavior. For example, M could be a slow, but simple sub-
routine for sorting a list. The term N could be a replacement that runs much faster.
If we can prove M and N to be operationally equivalent, then this means we can
safely use the faster routine instead of the slower one.

Another example are compiler optimizations. Many compilers will try to optimize
the code that they produce, to eliminate useless instructions, to avoid duplicate
calculations, etc. Such an optimization often means replacing a piece of code M
by another piece of code N , without necessarily knowing much about the context
in which M is used. Such a replacement is safe if M and N are operationally
equivalent.

On the other hand, operational equivalence is a somewhat problematic notion. The
problem is that the concept is not stable under adding new language features. It
can happen that two terms, M and N , are operationally equivalent, but when a
new feature is added to the language, they become unequivalent, even if M and N
do not use the new feature. The reason is the operational equivalence is defined in
terms of contexts. Adding new features to a language also means that there will
be new contexts, and these new contexts might be able to distinguish M and N .

This can be a problem in practice. Certain compiler optimizations might be sound
for a sequential language, but might become unsound if new language features
are added. Code that used to be correct might suddenly become incorrect if used
in a richer environment. For example, many programs and library functions in C
assume that they are executed in a single-threaded environment. If this code is
ported to a multi-threaded environment, it often turns out to be no longer correct,
and in many cases it must be re-written from scratch.

10.8 Operational equivalence and parallel or

Let us now look at a concrete example in PCF. We say that a term POR imple-
ments the parallel or function if it has the following behavior:

POR TP → T, for all P
POR NT → T, for all N
POR FF → F.

Note that this in particular implies POR TΩ = T and POR ΩT = T, where Ω
is some divergent term. It should be clear why POR is called the “parallel” or:
the only way to achieve such behavior is to evaluate both its arguments in parallel,
and to stop as soon as one argument evaluates to T or both evaluate to F.

82

Proposition 10.7. POR is not definable in PCF.

We do not give the proof of this fact, but the idea is relatively simple: one proves
by induction that every PCF context C[−,−] with two holes has the following
property: either, there exists a term N such that C[M, M ′] = N for all M, M ′

(i.e., the context does not look at M, M ′ at all), or else, either C[Ω, M] diverges
for all M , or C[M, Ω] diverges for all M . Here, again, Ω is some divergent term
such as Y(λx.x).

Although POR is not definable in PCF, we can define the following term, called
the POR-tester:

POR-test = λx.if xTΩ then
if xΩT then

if xFF then Ω
else T

else Ω
else Ω

The POR-tester has the property that POR-test M = T if M implements the
parallel or function, and in all other cases POR-test M diverges. In particular,
since parallel or is not definable in PCF, we have that POR-test M diverges, for all
PCF terms M . Thus, when applied to any PCF term, POR-test behaves precisely
as the function λx.Ω does. One can make this into a rigorious argument that shows
that POR-test and λx.Ω are operationally equivalent:

POR-test =op λx.Ω (in PCF).

Now, suppose we want to define an extension of PCF called parallel PCF. It
is defined in exactly the same way as PCF, except that we add a new primitive
function POR , and small-step reduction rules

M → M ′ N → N ′

POR MN → POR M ′N ′

POR TN → T

POR MT → T

POR FF → F

83

Parallel PCF enjoys many of the same properties as PCF, for instance, Lem-
mas 10.1–10.3 and Proposition 10.4 continue to hold for it.

But notice that

POR-test 6=op λx.Ω (in parallel PCF).

This is because the context C[−] = [−] POR distinguishes the two terms: clearly,
C[POR-test] ⇓ T, whereas C[λx.Ω] diverges.

11 Complete partial orders

11.1 Why are sets not enough, in general?

As we have seen in Section 9, the interpretation of types as plain sets is quite
sufficient for the simply-typed lambda calculus. However, it is insufficient for a
language such as PCF. Specifically, the problem is the fixpoint operator Y : (A →
A) → A. It is clear that there are many functions f : A → A from a set A to
itself that do not have a fixpoint; thus, there is no chance we are going to find an
interpretation for a fixpoint operator in the simple set-theoretic model.

On the other hand, if A and B are types, there are generally many functions f :
[[A]] → [[B]] in the set-theoretic model that are not definable by lambda terms.
For instance, if [[A]] and [[B]] are infinite sets, then there are uncountably many
functions f : [[A]] → [[B]]; however, there are only countably many lambda terms,
and thus there are necessarily going to be functions that are not the denotation of
any lambda term.

The idea is to put additional structure on the sets that interpret types, and to require
functions to preserve that structure. This is going to cut down the size of the
function spaces, decreasing the “slack” between the functions definable in the
lambda calculus and the functions that exist in the model, and simultaneously
increasing the chances that additional structure, such as fixpoint operators, might
exist in the model.

Complete partial orders are one such structure that is commonly used for this
purpose. The method is originally due to Dana Scott.

84

1 2 3 4 nT F* 0
b b b

b

b

b

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b b

b

b

b

b

J
J

Q
QQ
J
J

�

�� �����

...

...

... ...
...
...

"
""

"
""

b
bbb

bb
.b

bb
"

""

aaaa
ee %%!!!!

.
.

1 B2 N

ω ω + 1 B
B

Figure 4: Some posets

11.2 Complete partial orders

Definition. A partially ordered set or poset is a set X together with a binary
relation v satisfying

• reflexivity: for all x ∈ X , x v x,

• antisymmetry: for all x, y ∈ X , x v y and y v x implies x = y,

• transitivity: for all x, y, z ∈ X , x v y and y v z implies x v z.

The concept of a partial order differs from a total order in that we do not require
that for any x and y, either x v y or y v x. Thus, in a partially ordered set it is
permissible to have incomparable elements.

We can often visualize posets, particularly finite ones, by drawing their line dia-
grams as in Figure 4. In these diagrams, we put one circle for each element of
X , and we draw an edge from x upward to y if x v y and there is no z with
x v z v y. Such line diagrams are also known as Hasse diagrams.

The idea behind using a partial order to denote computational values is that x v y
means that x is less defined than y. For instance, if a certain term diverges, then
its denotation will be less defined than, or below that of a term that has a definite
value. Similarly, a function is more defined than another if it converges on more
inputs.

85

Another important idea in using posets for modeling computational value is that
of approximation. We can think of some infinite computational object (such as, an
infinite stream), to be a limit of successive finite approximations (such as, longer
and longer finite streams). Thus we also read x v y as x approximates y. A
complete partial order is a poset in which every countable chain of increasing
elements approximates something.

Definition. Let X be a poset and let A ⊆ X be a subset. We say that x ∈ X is
an upper bound for A if x v a for all a ∈ A. We say that x is a least upper bound
for A if x is an upper bound, and whenever y is also an upper bound, then x v y.

Definition. An ω-chain in a poset X is a sequence of elements x0, x1, x2, . . .
such that

x0 v x1 v x2 v . . .

Definition. A complete partial order (cpo) is a poset such that every ω-chain of
elements has a least upper bound.

If x0, x1, x2, . . . is an ω-chain of elements in a cpo, we write BB���i∈N
xi for the least

upper bound. We also call the least upper bound the limit of the ω-chain.

Not every poset is a cpo. In Figure 4, the poset labeled ω is not a cpo, because the
evident ω-chain does not have a least upper bound (in fact, it has no upper bound
at all). The other posets shown in Figure 4 are cpos.

11.3 Properties of limits

Proposition 11.1. 1. Monotonicity. Suppose {xi}i and {yi}i are ω-chains in
a cpo C, such that xi v yi for all i. Then

BB���
i

xi v BB���
i

yi.

2. Exchange. Suppose {xij}i,j∈N is a doubly monotone double sequence of
elements of a cpo C, i.e., whenever i 6 i′ and j 6 j′, then xij v xi′j′ .
Then

BB���
i∈N

BB���
j∈N

xij = BB���
j∈N

BB���
i∈N

xij = BB���
k∈N

xkk .

In particular, all limits shown are well-defined.

Exercise 33. Prove Proposition 11.1.

86

11.4 Continuous functions

If we model data types as cpo’s, it is natural to model algorithms as functions
from cpo’s to cpo’s. These functions are subject to two constraints: they have to
be monotone and continuous.

Definition. A function f : C → D between posets C and D is said to be mono-
tone if for all x, y ∈ C,

x v y ⇒ f(x) v f(y).

A function f : C → D between cpo’s C and D is said to be continuous if it is
monotone and it preserves least upper bounds of ω-chains, i.e., for all ω-chains
{xi}i∈N in C,

f(BB���
i∈N

xi) = BB���
i∈N

f(xi).

The intuitive explanation for the monotonicity requirement is that information is
“positive”: more information in the input cannot lead to less information in the
output of an algorithm. The intuitive explanation for the continuity requirement is
that any particular output of an algorithm can only depend on a finite amount of
input.

11.5 Pointed cpo’s and strict functions

Definition. A cpo is said to be pointed if it has a least element. The least element
is usually denoted ⊥ and pronounced “bottom”. All cpo’s shown in Figure 4 are
pointed.

A coninuous function between pointed cpo’s is said to be strict if it preserves the
bottom element.

11.6 Products and function spaces

If C and D are cpo’s, then their cartesian product C × D is also a cpo, with the
pointwise order given by (x, y) v (x′, y′) iff x v x′ and y v y′. Least upper
bounds are also given pointwise, thus

BB���
i

(xi, yi) = (BB���
i

xi, BB���
i

yi).

87

Proposition 11.2. The first and second projections, π1 : C × D → C and π2 :
C × D → D, are continuous functions. Moreover, if f : E → C and g : E → D
are continuous functions, then so is the function h : E → C ×D given by h(z) =
(f(z), g(z)).

If C and D are cpo’s, then the set of continuous functions f : C → D forms a cpo,
denoted DC . The order is given pointwise: given two functions f, g : C → D,
we say that

f v g iff for all x ∈ C, f(x) v g(x).

Proposition 11.3. The set DC of continuous functions from C to D, together with
the order just defined, is a complete partial order.

Proof. Clearly the set DC is partially ordered. What we must show is that least
upper bounds of ω-chains exist. Given an ω-chain f0, f1, . . . in DC , we define
g ∈ DC to be the pointwise limit, i.e.,

g(x) = BB���
i∈N

fi(x),

for all x ∈ C. Note that {fi(x)}i does indeed form an ω-chain in C, so that g is a
well-defined function. We claim that g is the least upper bound of {fi}i. First we
need to show that g is indeed an element of DC . To see that g is monotone, we
use Proposition 11.1(1) and calculate, for any x v y ∈ C,

g(x) = BB���
i∈N

fi(x) v BB���
i∈N

fi(y) = g(y).

To see that g is continuous, we use Proposition 11.1(2) and calculate, for any
ω-chain x0, x1, . . . in C,

g(BB���
j

xj) = BB���
i

BB���
j

fi(xj) = BB���
j

BB���
i

fi(xj) = BB���
j

g(xj).

Finally, we must show that g is the least upper bound of the {fi}i. Clearly, fi v g
for all i, so that g is an upper bound. Now suppose h ∈ DC is any other upper
bound of {fi}. Then for all x, fi(x) v h(x). Since g(x) was defined to be the
least upper bound of {fi(x)}i, we then have g(x) v h(x). Since this holds for all
x, we have g v h. Thus g is indeed the least upper bound.

Exercise 34. Recall the cpo B from Figure 4. The cpo B
B is also shown in

Figure 4. Its 11 elements correspond to the 11 continuous functions from B to B.
Label the elements of B

B with the functions they correspond to.

88

Proposition 11.4. The application function DC × C → D, which maps (f, x) to
f(x), is continuous.

Proposition 11.5. Continuous functions can be continuously curried and un-
curried. In other words, if f : C × D → E is a continuous function, then
f∗ : C → ED , defined by f∗(x)(y) = f(x, y), is well-defined and continuous.
Conversely, if g : C → ED is a continuous function, then g∗ : C × D → E, de-
fined by g∗(x, y) = g(x)(y), is well-defined and continuous. Moreover, (f ∗)∗ = f
and (g∗)

∗ = g.

11.7 The interpretation of the simply-typed lambda calculus in
complete partial orders

The interpretation of the simply-typed lambda calculus in cpo’s resembles the set-
theoretic interpretation, except that types are interpreted by cpo’s instead of sets,
and typing judgments are interpreted as continuous functions.

For each basic type ι, assume that we have chosen a pointed cpo Sι. We can then
associate a pointed cpo [[A]] to each type A recursively:

[[ι]] = Sι

[[A → B]] = [[B]][[A]]

[[A × B]] = [[A]] × [[B]]
[[1]] = 1

Typing judgments are now interpreted as continuous functions

[[A1]] × . . . × [[An]] → [[B]]

in precisely the same way as they were defined for the set-theoretic interpretation.
The only thing we need to check, at every step, is that the function defined is
indeed continuous. For variables, this follows from the fact that projections of
cartesian products are continuous (Proposition 11.2). For applications, we use the
fact that the application function of cpo’s is continuous (Proposition 11.4), and for
lambda-abstractions, we use the fact that currying is a well-defined, continuous
operation (Proposition 11.5). Finally, the continuity of the maps associated with
products and projections follows from Proposition 11.2.

Proposition 11.6 (Soundness and Completeness). The interpretation of the simply-
typed lambda calculus in pointed cpo’s is sound and complete with respect to the
lambda-βη calculus.

89

11.8 Cpo’s and fixpoints

One of the reasons, mentioned in the introduction to this section, for using cpo’s
instead of sets for the interpretation of the simply-typed lambda calculus is that
cpo’s admit fixpoint, and thus they can be used to interpret an extension of the
lambda calculus with a fixpoint operator.

Proposition 11.7. Let C be a pointed cpo and let f : C → C be a continuous
function. Then f has a least fixpoint.

Proof. Define x0 = ⊥ and xi+1 = f(xi), for all i ∈ N. The resulting sequence
{xi}i is an ω-chain, because clearly x0 v x1 (since x0 is the least element), and
if xi v xi+1, then f(xi) v f(xi+1) by monotonicity, hence xi+1 v xi+2. It
follows by induction that xi v xi+1. Let x = BB���i xi be the limit of this ω-chain.
Then using continuity of f , we have

f(x) = f(BB���
i

xi) = BB���
i

f(xi) = BB���
i

xi+1 = x.

To prove that it is the least fixpoint, let y be any other fixpoint, i.e., let f(y) = y.
We prove by induction that for all i, xi v y. For i = 0 this is trivial because
x0 = ⊥. Assume xi v y, then xi+1 = f(xi) v f(y) = y. It follows that y is an
upper bound for {xi}i. Since x is, by definition, the least upper bound, we have
x v y. Since y was arbitrary, x is below any fixpoint, hence x is the least fixpoint
of f . �

If f : C → C is any continuous function, let us write f † for its least fixpoint.
We claim that f † depends continuously on f , i.e., that † : CC → C defines a
continuous function.

Proposition 11.8. The function † : CC → C, which assigns to each continuous
function f ∈ CC its least fixpoint f † ∈ C, is continuous.

Exercise 35. Prove Proposition 11.8.

Thus, if we add to the simply-typed lambda calculus a family of fixpoint opera-
tors YA : (A → A) → A, the resulting extended lambda calculus can then be
interpreted in cpo’s by letting

[[YA]] = † : [[A]][[A]] → [[A]].

90

11.9 Example: Streams

Consider streams of characters from some alphabet A. Let A6ω be the set of finite
or infinite sequences of characters. We order A by the prefix ordering: if s and t
are (finite or infinite) sequences, we say s v t if s is a prefix of t, i.e., if there exists
a sequence s′ such that t = ss′. Note that if s v t and s is an infinite sequence,
then necessarily s = t, i.e., the infinite sequences are the maximal elements with
respect to this order.

Exercise 36. Prove that the set A6ω forms a cpo under the prefix ordering.

Exercise 37. Consider an automaton that reads characters from an input stream
and writes characters to an output stream. For each input character read, it can
write zero, one, or more output characters. Discuss how such an automaton gives
rise to a continuous function from A6ω → A6ω . In particular, explain the mean-
ing of monotonicity and continuity in this context. Give some examples.

12 Denotational semantics of PCF

The denotational semantics of PCF is defined in terms of cpo’s. It extends the cpo
semantics of the simply-typed lambda calculus. Again, we assign a cpo [[A]] to
each PCF type A, and a continuous function

[[Γ ` M : B]] : [[Γ]] → [[B]]

to every PCF typing judgment. The interpretation is defined in precisely the same
way as for the simply-typed lambda calculus. The interpretation for the PCF-
specific terms is shown in Table 10. Recall that B and N are the cpos of lifted
booleans and lifted natural numbers, respectively, as shown in Figure 4.

Definition. Two PCF terms M and N of equal types are denotationally equiv-
alent, in symbols M =den N , if [[M]] = [[N]]. We also write M vden N if
[[M]] v [[N]].

12.1 Soundness and adequacy

We have now defined the three notions of equivalence on terms: =ax, =op, and
=den. In general, one does not expect the three equivalences to coincide. For
example, any two divergent terms are operationally equivalent, but there is no

91

Types: [[bool]] = B

[[nat]] = N

Terms: [[T]] = T ∈ B

[[F]] = F ∈ B

[[zero]] = 0 ∈ N

[[succ (M)]] =

{

⊥ if [[M]] = ⊥,
n + 1 if [[M]] = n

[[pred (M)]] =

⊥ if [[M]] = ⊥,
0 if [[M]] = 0,
n if [[M]] = n + 1

[[iszero (M)]] =

⊥ if [[M]] = ⊥,
T if [[M]] = 0,
F if [[M]] = n + 1

[[if M then N else P]] =

⊥ if [[M]] = ⊥,
[[N]] if [[M]] = F,
[[P]] if [[M]] = T,

[[Y(M)]] = [[M]]†

Table 10: Cpo semantics of PCF

92

reason why they should be axiomatically equivalent. Also, the POR-tester and
the term λx.Ω are operationally equivalent in PCF, but they are not denotationally
equivalent (since a function representing POR clearly exists in the cpo semantics).
For general terms M and N , one has the following property:

Theorem 12.1 (Soundness). For PCF terms M and N , the following implica-
tions hold:

M =ax N ⇒ M =den N ⇒ M =op N.

Soundness is a very useful property, because M =ax N is in general easier to
prove than M =den N , and M =den N is in turns easier to prove than M =op N .
Thus, soundness gives us a powerful proof method: to prove that two terms are
operationally equivalent, it suffices to show that they are equivalent in the cpo
semantics (if they are), or even that they are axiomatically equivalent.

As the above examples show, the converse implications are not in general true.
However, the converse implications hold if the terms M and N are closed and
of observable type, and if N is a value. This property is called computational
adequacy. Recall that a program is a closed term of observable type, and a result
is a closed value of observable type.

Theorem 12.2 (Computational Adequacy). If M is a program and V is a result,
then

M =ax V ⇐⇒ M =den V ⇐⇒ M =op V.

Proof. First note that the small-step semantics is contained in the axiomatic se-
mantics, i.e., if M → N , then M =ax N . This is easily shown by induction on
derivations of M → N .

To prove the theorem, by soundness, it suffices to show that M =op V implies
M =ax V . So assume M =op V . Since V ⇓ V and V is of observable type, it
follows that M ⇓ V . Therefore M →∗ V by Proposition 10.6. But this already
implies M =ax V , and we are done. �

12.2 Full abstraction

We have already seen that the operational and denotational semantics do not co-
incide for PCF, i.e., there are some terms such that M =op N but M 6=den N .
Examples of such terms are POR-test and λx.Ω.

93

But of course, the particular denotational semantics that we gave to PCF is not the
only possible denotational semantics. One can ask whether there is a better one.
For instance, instead of cpo’s, we could have used some other kind of mathemati-
cal space, such as a cpo with additional structure or properties, or some other kind
of object altogether. The search for good denotational semantics is a subject of
much research. The following terminology helps in defining precisely what is a
“good” denotational semantics.

Definition. A denotational semantics is called fully abstract if for all terms M
and N ,

M =den N ⇐⇒ M =op N.

If the denotational semantics involves a partial order (such as a cpo semantics), it
is also called order fully abstract if

M vden N ⇐⇒ M vop N.

The search for a fully abstract denotational semantics for PCF was an open prob-
lem for a very long time. Milner proved that there could be at most one such
fully abstract model in a certain sense. This model has a syntactic description
(essentially the elements of the model are PCF terms), but for a long time, no
satisfactory semantic description was known. The problem has to do with sequen-
tiality: a fully abstract model for PCF must be able to account for the fact that
certain parallel constructs, such as parallel or, are not definable in PCF. Thus, the
model should consist only of “sequential” functions. Berry and others developed
a theory of “stable domain theory”, which is based on cpo’s with a additional
properties intended to capture sequentiality. This research led to many interesting
results, but the model still failed to be fully abstract.

Finally, in 1992, two competing teams of researchers, Abramsky, Jagadeesan and
Malacaria, and Hyland and Ong, succeeded in giving a fully abstract semantics
for PCF in terms of games and strategies. Games capture the interaction between
a player and an opponent, or between a program and its environment. By consid-
ering certain kinds of “history-free” strategies, it is possible to capture the notion
of sequentiality in just the right way to match PCF. In the last decade, game se-
mantics has been extended to give fully abstract semantics to a variety of other
programming languages, including, for instance, Algol-like languages.

Finally, it is interesting to note that the problem with “parallel or” is essentially
the only obstacle to full abstraction for the cpo semantics. As soon as one adds
“parallel or” to the language, the semantics becomes fully abstract.

Theorem 12.3. The cpo semantics is fully abstract for parallel PCF.

94

