
16 Polymorphism

The polymorphic lambda calculus, also known as “System F”, is obtained extend-

ing the Curry-Howard isomorphism to the quantifier ∀. For example, consider the

identity function λxA.x. This function has type A → A. Another identity func-

tion is λxB .x of type B → B, and so forth for every type. We can thus think of

the identity function as a family of functions, one for each type. In the polymor-

phic lambda calculus, there is a dedicated syntax for such families, and we write

Λα.λxα.x of type ∀α.α → α.

System F was independently discovered by Jean-Yves Girard and John Reynolds

in the early 1970’s.

16.1 Syntax of System F

The primary difference between System F and simply-typed lambda calculus is

that System F has a new kind of function that takes a type, rather than a term, as

its argument. We can also think of such a function as a family of terms that is

indexed by a type.

Let α, β, γ range over a countable set of type variables. The types of System F

are given by the grammar

Types: A,B ::= α A → B ∀α.A

A type of the form A → B is called a function type, and a type of the form ∀α.A
is called a universal type. The type variable α is bound in ∀α.A, and we identify

types up to renaming of bound variables; thus, ∀α.α → α and ∀β.β → β are

the same type. We write FTV (A) for the set of free type variables of a type A,

defined inductively by:

• FTV (α) = {α},

• FTV (A → B) = FTV (A) ∪ FTV (B),

• FTV (∀α.A) = FTV (A) \ {α}.

We also write A[B/α] for the result of replacing all free occurrences of α by B in

A. Just like the substitution of terms (see Section 2.3), this type substitution must

be capture-free, i.e., special care must be taken to rename any bound variables of

A so that their names are different from the free variables of B.

108

(var)
Γ, x:A ⊢ x : A

(app)
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

(abs)
Γ, x:A ⊢ M : B

Γ ⊢ λxA.M : A → B

(typeapp)
Γ ⊢ M : ∀α.A

Γ ⊢ MB : A[B/α]

(typeabs)
Γ ⊢ M : A α 6∈ FTV (Γ)

Γ ⊢ Λα.M : ∀α.A

Table 11: Typing rules for System F

The terms of System F are:

Terms: M,N ::= x MN λxA.M MA Λα.M

Of these, variables x, applications MN , and lambda abstractions λxA.M are ex-

actly as for the simply-typed lambda calculus. The new terms are type application

MA, which is the application of a type function M to a type A, and type abstrac-

tion Λα.M , which denotes the type function that maps a type α to a term M . The

typing rules for System F are shown in Table 11.

We also write FTV (M) for the set of free type variables in the term M . We need

a final notion of substitution: if M is a term, B a type, and α a type variable, we

write M [B/α] for the capture-free substitution of B for α in M .

16.2 Reduction rules

In System F, there are two rules for β-reduction. The first one is the familiar rule

for the application of a function to a term. The second one is an analogous rule

for the application of a type function to a type.

(β→) (λxA.M)N → M [N/x],
(β∀) (Λα.M)A → M [A/α],

Similarly, there are two rules for η-reduction.

(η→) λxA.Mx → M, if x 6∈ FV (M),
(η∀) Λα.Mα → M, if α 6∈ FTV (M).

109

The congruence and ξ-rules are as expected:

M → M ′

MN → M ′N

N → N ′

MN → MN ′

M → M ′

λxAM → λxAM ′

M → M ′

MA → M ′A
M → M ′

ΛαM → ΛαM ′

16.3 Examples

Just as in the untyped lambda calculus, many interesting data types and operations

can be encoded in System F.

16.3.1 Booleans

Define the System F type bool , and terms T,F : bool , as follows:

bool = ∀α.α → α → α,
T = Λα.λxα.λyα.x,
F = Λα.λxα.λyα.y.

It is easy to see from the typing rules that ⊢ T : bool and ⊢ F : bool are valid

typing judgements. We can define an if-then-else operation

if then else : ∀β. bool → β → β → β,
if then else = Λβ.λzbool .zβ.

It is then easy to see that, for any type B and any pair of terms M,N : B, we have

if then else BTMN →→β M,
if then else B FMN →→β N.

Once we have if-then-else, it is easy to define other boolean operations, for exam-

ple

and = λabool .λbbool . if then else bool a bF,
or = λabool .λbbool . if then else bool aT b,
not = λabool . if then else bool aFT.

Later, in Proposition 16.8, we will show that up to βη equality, T and and F are

the only closed terms of type bool . This, together with the if-then-else operation,

justifies calling this the type of booleans.

110

Note that the above encodings of the booleans and their if-then-else operation

in System F is exactly the same as the corresponding encodings in the untyped

lambda calculus from Section 3.1, provided that one erases all the types and type

abstractions. However, there is an important difference: in the untyped lambda

calculus, the booleans were just two terms among many, and there was no guar-

antee that the argument of a boolean function (such as and and or) was actually

a boolean. In System F, the typing guarantees that all closed boolean terms even-

tually reduce to either T or F.

16.3.2 Natural numbers

We can also define a type of Church numerals in System F. We define:

nat = ∀α.(α → α) → α → α,
0 = Λα.λfα→α.λxα.x,
1 = Λα.λfα→α.λxα.fx,
2 = Λα.λfα→α.λxα.f(fx),
3 = Λα.λfα→α.λxα.f(f(fx)),
. . .

It is then easy to define simple functions, such as successor, addition, and multi-

plication:

succ = λnnat .Λα.λfα→α.λxα.f(nαfx),
add = λnnat .λmnat .λfα→α.λxα.nαf(mαfx),
mult = λnnat .λmnat .λfα→α.nα(mαf).

Just as for the booleans, these encodings of the Church numerals and functions

are exactly the same as those of the untyped lambda calculus from Section 3.2, if

one erases all the types and type abstractions. We will show in Proposition 16.9

below that the Church numerals are, up to βη-equivalence, the only closed terms

of type nat .

16.3.3 Pairs

You will have noticed that we didn’t include a cartesian product type A×B in the

definition of System F. This is because such a type is definable. Specifically, let

A×B = ∀α.(A → B → α) → α,
〈M,N〉 = Λα.λfA→B→α.fMN.

111

Note that when M : A and N : B, then 〈M,N〉 : A× B. Moreover, for any pair

of types A,B, we have projection functions π1AB : A × B → A and π2AB :
A×B → B, defined by

π1 = Λα.Λβ.λpα×β .pα(λxα.λyβ .x),
π2 = Λα.Λβ.λpα×β .pβ(λxα.λyβ .y).

This satisfies the usual laws

π1AB〈M,N〉 →→β M,
π2AB〈M,N〉 →→β N.

Once again, these encodings of pairs and projections are exactly the same as those

we used in the untyped lambda calculus, when one erases all the type-related parts

of the terms. You will show in Exercise 42 that every closed term of type A × B
is βη-equivalent to a term of the form 〈M,N〉.

Remark 16.1. It is also worth noting that the corresponding η-laws, such as

〈π1M,π2M〉 = M,

are not derivable in System F. These laws hold whenever M is a closed term, but

not necessarily when M contains free variables.

Exercise 39. Find suitable encodings in System F of the types 1, A + B, and 0,

along with the corresponding terms ∗, in1, in2, caseM ofxA ⇒ N | yB ⇒ P , and

�AM .

16.4 Church-Rosser property and strong normalization

Theorem 16.2 (Church-Rosser). System F satisfies the Church-Rosser property,

both for β-reduction and for βη-reduction.

Theorem 16.3 (Strong normalization). In System F, all terms are strongly nor-

malizing.

The proof of the Church-Rosser property is similar to that of the simply-typed

lambda calculus, and is left as an exercise. The proof of strong normalization is

much more complex; it can be found in Chapter 14 of “Proofs and Types” [2].

112

16.5 The Curry-Howard isomorphism

From the point of view of the Curry-Howard isomorphism, ∀α.A is the universally

quantified logical statement “for all α, A is true”. Here α ranges over atomic

propositions. For example, the formula ∀α.∀β.α → (β → α) expresses the valid

fact that the implication α → (β → α) is true for all propositions α and β. Since

this quantifier ranges over propositions, it is called a second-order quantifier, and

the corresponding logic is second-order propositional logic.

Under the Curry-Howard isomorphism, the typing rules for System F become the

following logical rules:

• (Axiom)

(axx)
Γ, x:A ⊢ A

• (→-introduction)

(→-Ix)
Γ, x:A ⊢ B
Γ ⊢ A → B

• (→-elimination)

(→-E)
Γ ⊢ A → B Γ ⊢ A

Γ ⊢ B

• (∀-introduction)

(∀-I)
Γ ⊢ A α 6∈ FTV (Γ)

Γ ⊢ ∀α.A

• (∀-elimination)

(∀-E)
Γ ⊢ ∀α.A

Γ ⊢ A[B/α]

The first three of these rules are familiar from propositional logic.

The ∀-introduction rule is also known as universal generalization. It corresponds

to a well-known logical reasoning principle: If a statement A has been proven for

some arbitrary α, then it follows that it holds for all α. The requirement that α is

“arbitrary” has been formalized in the logic by requiring that α does not appear in

any of the hypotheses that were used to derive A, or in other words, that α is not

among the free type variables of Γ.

113

The ∀-elimination rule is also known as universal specialization. It is the simple

principle that if some statement is true for all propositions α, then the same state-

ment is true for any particular proposition B. Note that, unlike the ∀-introduction

rule, this rule does not require a side condition.

Finally, we note that the side condition in the ∀-introduction rule is of course the

same as that of the typing rule (typeabs) of Table 11. From the point of view of

logic, the side condition is justified because it asserts that α is “arbitrary”, i.e.,

no assumptions have been made about it. From a lambda calculus view, the side

condition also makes sense: otherwise, the term λxα.Λα.x would be well-typed

of type α → ∀α.α, which clearly does not make any sense: there is no way that an

element x of some fixed type α could suddenly become an element of an arbitrary

type.

16.6 Supplying the missing logical connectives

It turns out that a logic with only implication → and a second-order universal

quantifier ∀ is sufficient for expressing all the other usual logical connectives, for

example:

A∧B ⇐⇒ ∀α.(A → B → α) → α, (1)

A∨B ⇐⇒ ∀α.(A → α) → (B → α) → α, (2)

¬A ⇐⇒ ∀α.A → α, (3)

⊤ ⇐⇒ ∀α.α → α, (4)

⊥ ⇐⇒ ∀α.α, (5)

∃β.A ⇐⇒ ∀α.(∀β.(A → α)) → α. (6)

Exercise 40. Using informal intuitionistic reasoning, prove that the left-hand side

is logically equivalent to the right-hand side for each of (1)–(6).

Remark 16.4. The definitions (1)–(6) are somewhat reminiscent of De Morgan’s

laws and double negations. Indeed, if we replace the type variable α by the con-

stant F in (1), the right-hand side becomes (A → B → F) → F, which is

intuitionistically equivalent to ¬¬(A ∧ B). Similarly, the right-hand side of (2)

becomes (A → F) → (B → F) → F, which is intuitionistically equivalent to

¬(¬A ∧ ¬B), and similarly for the remaining connectives. However, the ver-

sions of (1), (2), and (6) using F are only classically, but not intuitionistically

equivalent to their respective left-hand sides. On the other hand, it is remarkable

114

that by the use of ∀α, each right-hand side is intuitionistically equivalent to the

left-hand sides.

Remark 16.5. Note the resemblance between (1) and the definition of A×B given

in Section 16.3.3. Naturally, this is not a coincidence, as logical conjunctionA∧B
should correspond to cartesian productA×B under the Curry-Howard correspon-

dence. Indeed, by applying the same principle to the other logical connectives, one

arrives at a good hint for Exercise 39.

Exercise 41. Extend System F with an existential quantifier ∃β.A, not by using

(6), but by adding a new type with explicit introduction and elimination rules to

the language. Justify the resulting rules by comparing them with the usual rules

of mathematical reasoning for “there exists”. Can you explain the meaning of the

type ∃β.A from a programming language or lambda calculus point of view?

16.7 Normal forms and long normal forms

Recall that a β-normal form of System F is, by definition, a term that contains no

β-redex, i.e., no subterm of the form (λxA.M)N or (Λα.M)A. The following

proposition gives another useful way to characterize the β-normal forms.

Proposition 16.6 (Normal forms). A term of System F is a β-normal form if and

only if it is of the form

Λa1.Λa2 . . .Λan.zQ1Q2 . . . Qk, (7)

where:

• n > 0 and k > 0;

• Each Λai is either a lambda abstraction λxAi

i or a type abstraction Λαi;

• Each Qj is either a term Mj or a type Bj ; and

• Each Qj , when it is a term, is recursively in normal form.

Proof. First, it is clear that every term of the form (7) is in normal form: the term

cannot itself be a redex, and the only place where a redex could occur is inside

one of the Qj , but these are assumed to be normal.

For the converse, consider a term M in β-normal form. We show that M is of the

form (7) by induction on M .

115

• If M = z is a variable, then it is of the form (7) with n = 0 and k = 0.

• If M = NP is normal, then N is normal, so by induction hypothesis, N is

of the form (7). But since NP is normal, N cannot be a lambda abstraction,

so we must have n = 0. It follows that NP = zQ1Q2 . . . QkP is itself of

the form (7).

• If M = λxA.N is normal, then N is normal, so by induction hypothesis,

N is of the form (7). It follows immediately that λxA.N is also of the form

(7).

• The case for M = NA is like the case for M = NP .

• The case for M = Λα.N is like the case for M = λxA.N . �

Definition. In a term of the form (7), the variable z is called the head variable of

the term.

Of course, by the Church-Rosser property together with strong normalization, it

follows that every term of System F is β-equivalent to a unique β-normal form,

which must then be of the form (7). On the other hand, the normal forms (7) are

not unique up to η-conversion; for example, λxA→B .x and λxA→B .λyA.xy are

η-equivalent terms and are both of the form (7). In order to achieve uniqueness up

to βη-conversion, we introduce the notion of a long normal form.

Definition. A term of System F is a long normal form if

• it is of the form (7);

• the body zQ1 . . .Qk is of atomic type (i.e., its type is a type variable); and

• each Qj , when it is a term, is recursively in long normal form.

Proposition 16.7. Every term of System F is βη-equivalent to a unique long nor-

mal form.

Proof. By strong normalization and the Church-Rosser property of β-reduction,

we already know that every term is β-equivalent to a unique β-normal form. It

therefore suffices to show that every β-normal form is η-equivalent to a unique

long normal form.

We first show that every β-normal form is η-equivalent to some long normal form.

We prove this by induction. Indeed, consider a β-normal form of the form (7).

116

By induction hypothesis, each of Q1, . . . , Qk can be η-converted to long normal

form. Now we proceed by induction on the type A of zQ1 . . . Qk. If A = α is

atomic, then the normal form is already long, and there is nothing to show. If

A = B → C, then we can η-expand (7) to

Λa1.Λa2 . . .Λan.λw
B .zQ1Q2 . . . Qkw

and proceed by the inner induction hypothesis. If A = ∀α.B, then we can η-

expand (7) to

Λa1.Λa2 . . .Λan.Λα.zQ1Q2 . . . Qkα

and proceed by the inner induction hypothesis.

For uniqueness, we must show that no two different long normal forms can be

βη-equivalent to each other. We leave this as an exercise. �

16.8 The structure of closed normal forms

It is a remarkable fact that if M is in long normal form, then a lot of the structure

of M is completely determined by its type. Specifically: if the type of M is

atomic, then M must start with a head variable. If the type of M is of the form

B → C, then M must be, up to α-equivalence, of the form λxB .N , where N is a

long normal form of type C. And if the type of M is of the form ∀α.C, then M
must be, up to α-equivalence, of the form Λα.N , where N is a long normal form

of type C.

So for example, consider the type

A = B1 → B2 → ∀α3.B4 → ∀α5.β.

We say that this type have five prefixes, where each prefix is of the form “Bi →”

or “∀αi.”. Therefore, every long normal form of type A must also start with five

prefixes; specifically, it must start with

λxB1

1
.λxB2

2
.Λα3.λx

B4

4
.Λα5. . . .

The next part of the long normal form is a choice of head variable. If the term is

closed, the head variable must be one of the x1, x2, or x4. Once the head variable

has been chosen, then its type determines how many arguments Q1, . . . , Qk the

head variable must be applied to, and the types of these arguments. The structure

of each of Q1, . . . , Qk is then recursively determined by its type, with its own

117

choice of head variable, which then recursively determines its subterms, and so

on.

In other words, the degree of freedom in a long normal form is a choice of head

variable at each level. This choice of head variables completely determines the

long normal form.

Perhaps the preceding discussion can be made more comprehensible by means of

some concrete examples. The examples take the form of the following proposi-

tions and their proofs.

Proposition 16.8. Every closed term of type bool is βη-equivalent to either T or

F.

Proof. Let M be a closed term of type bool . By Proposition 16.7, we may assume

that M is a long normal form. Since bool = ∀α.α → α → α, every long normal

form of this type must start, up to α-equivalence, with

Λα.λxα.λyα. . . .

This must be followed by a head variable, which, since M is closed, can only be

x or y. Since both x and y have atomic type, neither of them can be applied to

further arguments, and therefore, the only two possible long normal forms are:

Λα.λxα.λyα.x
Λα.λxα.λyα.y,

which are T and F, respectively. �

Proposition 16.9. Every closed term of type nat is βη-equivalent to a Church

numeral n, for some n ∈ N.

Proof. Let M be a closed term of type nat . By Proposition 16.7, we may assume

that M is a long normal form. Since nat = ∀α.(α → α) → α → α, every long

normal form of this type must start, up to α-equivalence, with

Λα.λfα→α.λxα. . . .

This must be followed by a head variable, which, since M is closed, can only be

x or f . If the head variable is x, then it takes no argument, and we have

M = Λα.λfα→α.λxα.x

118

If the head variable is f , then it takes exactly one argument, so M is of the form

M = Λα.λfα→α.λxα.fQ1.

Because Q1 has type α, its own long normal form has no prefix; therefore Q1

must start with a head variable, which must again be x or f . If Q1 = x, we have

M = Λα.λfα→α.λxα.fx.

If Q1 has head variable f , then we have Q1 = fQ2, and proceeding in this man-

ner, we find that M has to be of the form

M = Λα.λfα→α.λxα.f(f(. . . (fx) . . .)),

i.e., a Church numeral. �

Exercise 42. Prove that every closed term of type A × B is βη-equivalent to a

term of the form 〈M,N〉, where M : A and N : B.

16.9 Application: representation of arbitrary data in System F

Let us consider the definition of a long normal form one more time. By definition,

every long normal form is of the form

Λa1.Λa2 . . .Λan.zQ1Q2 . . . Qk, (8)

where zQ1Q2 . . . Qk has atomic type and Q1, . . . , Qk are, recursively, long nor-

mal forms. Instead of writing the long normal form on a single line as in (8), let

us write it in tree form instead:

Λa1.Λa2 . . .Λan.z

✞✞
✞✞
✞✞
✞

✼✼
✼✼

✼✼
✼

❏❏
❏❏

❏❏
❏❏

❏❏
❏

Q1 Q2 · · · Qk,

where the long normal forms Q1, . . . , Qk are recursively also written as trees. For

example, with this notation, the Church numeral 2 becomes

Λα.λfα→α.λxα.f

f

x,

(9)

119

and the pair 〈M,N〉 becomes

Λα.λfA→B→α.f

✠✠
✠ ✺✺

✺

M N.

We can use this very idea to encode (almost) arbitrary data structures. For exam-

ple, suppose that the data structure we wish to encode is a binary tree whose leaves

are labelled by natural numbers. Let’s call such a thing a leaf-labelled binary tree.

Here is an example:
•

☛☛ ✸✸
✸

5 •
☞☞
☞ ✹✹
✹

8 7.

(10)

In general, every leaf-labelled binary tree is either a leaf, which is labelled by a

natural number, or else a branch that has exactly two children (a left one and a

right one), each of which is a leaf-labelled binary tree. Written as a BNF, we have

the following grammar for leaf-labelled binary trees:

Tree: T, S ::= leaf (n) branch (T, S).

When translating this as a System F type, we think along the lines of long normal

forms. We need a type variable α to represent leaf-labelled binary trees. We

need two head variables whose type ends in α: The first head variable, let’s call

it ℓ, represents a leaf, and takes a single argument that is a natural number. Thus

ℓ : nat → α. The second head variable, let’s call it b, represents a branch, and

takes two arguments that are leaf-labelled binary trees. Thus b : α → α → α. We

end up with the following System F type:

tree = ∀α.(nat → α) → (α → α → α) → α.

A typical long normal form of this type is:

Λα.λℓ nat →α.λbα→α→α.b

��
�� ❂❂

❂❂

ℓ b

✁✁
✁✁ ❃❃

❃❃

5 ℓ ℓ

8 7 ,

120

where 5, 7, and 8 denote Church numerals as in (9), here not expanded into long

normal form for brevity. Notice how closely this long normal form follows (10).

Here is the same term written on a single line:

Λα.λℓ nat →α.λbα→α→α.b(ℓ 5)(b(ℓ 8)(ℓ 7))

Exercise 43. Prove that the closed long normal forms of type tree are in one-to-

one correspondence with leaf-labelled binary trees.

121

