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Dedication

Durham 1991 Halifax 1995

To our birthday boy, and my long-time collaborator, Robin Cockett
as our collaboration enters its maturity (21 years), and

he enters his dotage (60 years) . . .

Best wishes for many more
productive and enjoyable years!
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Preludium

2006 Differential categories—an additive monoidal category of
“linear” maps, a (suitable) comonad whose coKleisli maps are
“smooth”, and a differential combinator. (This gave a
“categorical reconstruction” of Ehrhard & Regnier’s work)

2007 Talks by JRBC and RAGS on storage, etc (Eg my FMCS talk
at Colgate)

2009 Cartesian differential categories—a left additive Cartesian
category with a differential operator, and subcategories of
“linear” maps. CDCs are the coalgebras of a “higher order
chain rule fibration” comonad Faà [2011].
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Preludium

True: The coKliesli category of a (suitable) differential (storage)
category is a Cartesian differential category[2009].

Wished: The linear maps of a Cartesian differential category form a
differential category

Wished: Any Cartesian differential category may be (ff) embedded into
the coKliesli category of a (suitable) differential category.

Wished: Any differential category may be represented as the linear
maps of a (suitable) Cartesian differential category.
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Preludium

With two notions of differential categories (and their ancillary
notions) it’ll be convenient (today at least) to put an adjective in
front of the tensor notion (“⊗-differential category”), to match
that in front of the Cartesian notion. SO:

True: The coKliesli category of a (suitable) ⊗-differential (storage)
category is a Cartesian differential category[2009].

Wished: The linear maps of a Cartesian differential category form a
⊗-differential category

Wished: Any Cartesian differential category may be (ff) embedded into
the coKliesli category of a (suitable) ⊗-differential category.

Wished: Any ⊗-differential category may be represented as the linear
maps of a (suitable) Cartesian differential category.
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Summary

Cartesian Storage Categories given three equivalent ways:

• in terms of a system of L-linear maps

• abstract coKleisli category

• coKleisli category of a forceful comonad

We can define a Cartesian linear category to be

• the linear maps of a Cartesian storage category

• equivalently, a Cartesian category with an exact forceful
comonad
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Summary

We define a notion of ⊗-representability, similar to the
characterization of linear maps in terms of bilinear maps. Then
TFAE:

• Cartesian storage category with ⊗-representability

• the coKleisli category of a ⊗-storage category (aka a “Seely
category”)

In this context we define a ⊗-linear category as the linear maps of
a Cartesian storage category with ⊗-representability, which is
equivalent to being an exact ⊗-storage category.
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Summary

Add a deriving transform to a CSC to create a
Cartesian Differential Storage category, defined by:

For a Cartesian storage category X, TFAE:

• X is a CDC and Diff-linear = L-linear

• X is a CDC and 〈1, 0〉D×[ϕ] is L-linear

• X has a deriving transformation

If linear idempotents split, this is also equivalent to being the
coKleisli category of a ⊗-differential storage category

More precisely: if linear idempotents split, then a Cartesian
differential storage category automatically has ⊗-representability.
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Systems of L-linear maps

Given a Cartesian (i.e. having finite products) category X, denote
the simple slice fibration by X[ ] (so X[A] has the same objects as
X, and morphisms X −→ Y are X-morphisms X × A −→ Y ).

X has a system of L-linear maps (or “a system of linear maps”, L
being understood) if in each simple slice X[A] there is a class of
maps L[A] ⊆ X[A], (the L[A]-linear maps), satisfying:

[LS.1] Identity maps and projections are in L[A], and L[A] is closed
under ordered pairs;

[LS.2] L[A] is closed under composition and whenever g ∈ L[A] is a
retraction and gh ∈ L[A] then h ∈ L[A];

[LS.3] all substitution functors X[B]
X[f ]−−−−→ X[A] (given by A

f−−→ B)
preserve linear maps.

Note that L[ ] is a Cartesian subfibration of X[ ].
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Classified1 L-linear systems

A system of L-linear maps is strongly classified if there is an object
function S and maps X

ϕ−−→ S(X ) such that for every f :A× X
−→ Y there is a unique f ]:A× S(X ) −→ Y in L[A] (i.e. f ] is linear
in its second argument) making

A× X

1×ϕ
��

f // Y

A× S(X )
f ]

66

commute. The classification is said to be persistent in case
whenever f :A× B × X −→ Y is linear in its second argument B
then f ]:A× B × S(X ) −→ Y is also linear in its second argument.

1Co-classified?
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Cartesian storage categories

Definition: A Cartesian storage category is a Cartesian category X
with a persistently classified system of L-linear maps.

Consequences Define
ε = 1]A: S(A) −→ A as the linear lifting of the identity on A,
θ = ϕ]:A× S(X ) −→ S(A× X ) as the linear lifting of ϕ,
δ = (ϕϕ)]: S(A) −→ S2(A) as the linear lifting of ϕϕ,
and µ = εS : S2(A) −→ S(A). Then:

1. S is a strong functor (with strength given by θ).

2. (S , ϕ, µ) is a commutative monad.

3. (S , ε, δ) is a comonad on the category of linear maps.
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Strong abstract coKleisli categories

Definition: A strong abstract coKleisli category is a Cartesian
category X equipped with a strong functor S , a strong natural
transformation ϕ:X −→ S(X ), and an unnatural transformation
ε: S(X ) −→ X , satisfying

1. εS : S2(X ) −→ S(X ) is a strong natural transformation

2. ϕε = 1; S(ϕ)ε = 1, εε = S(ε)ε

3. projections are ε-natural

In such a category, the ε-natural maps form a system of linear
maps, classified by (S , ϕ). In this case, persistence = “S is a
commutative monad”. But:

Fact: In a strong abstract coKleisli category, the monad S is
commutative, and so the classification of linear maps is persistent.

So: If X is Cartesian, then it is a Cartesian storage category iff it is
a strong abstract coKleisli category.
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Forceful comonads

We look more carefully at the comonad S on the linear maps: the
strength θ is not a strength on the category of linear maps, so S as
a comonad is not necessarily strong. We remedy this by assuming
the existence of a force on the comonad S , viz a natural
transformation ψ: S(A× S(X )) −→ S(A× X ) which generates a
strength in the coKleisli category making S a strong monad.
(There are 6 axioms on ψ that do this.) A comonad with a force is
called forceful.

Proposition: In any Cartesian storage category, the comonad S on
the linear maps has a force given by ψ = S(θ)ε (the canonical
coKleisli image of θ).

Proposition: Given a Cartesian category with a forceful comonad,
its coKleisli category is a Cartesian storage category.
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Theorem: Cartesian Storage Categories

A category is a Cartesian storage category
iff it is the coKleisli category of a forceful comonad
iff it is a strong abstract coKleisli category.

Moreover: a category is the linear maps of a Cartesian storage
category iff it is a Cartesian category with an exact forceful
comonad (it’s tempting to call such categories “linear” . . . )

where “exact” means that

S(S(X ))
S(ε)
−−−−→−−−−→

ε
S(X )

ε−→ X

is a coequalizer. (A category with an exact comonad is always the
subcategory of ε-natural maps of its coKleisli category.)
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Representing tensors
A Cartesian storage category is ⊗-representable2 if, in each slice
X[A], for each X and Y there is an object X ⊗ Y and a bilinear
map ϕ⊗:X × Y −→ X ⊗ Y such that for every bilinear map
g :X × Y −→ Z in X[A] there is a unique linear map (in X[A])
making the following diagram commute:

X × Y

ϕ⊗
��

g // Z

X ⊗ Y
g⊗

77

Note that this means in X we have

A× X × Y

1×ϕ⊗

��

g // Z

A× (X ⊗ Y )
g⊗

66

2We are sorely tempted to call these Bilinear Cartesian Storage Categories!
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Persistence

There is a corresponding notion of unit representable, which we
shall always assume when assuming ⊗-representability; also we say
⊗-representability is persistent if linearity in other parameters (in
A) is preserved.

It turns out that persistence is automatic in coKleisli categories,
and so in Cartesian storage categories.

Proposition: If X has a system of linear maps with persistent
⊗-representation, then ⊗ is a symmetric tensor product with unit
on the subcategory of linear maps. Furthermore S is a monoidal
functor.

(The proof uses the universal lifting property given by ⊗-representability,

in “evident ways”.)
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⊗-Storage categories

A ⊗-storage category (aka “Seely” category) is a symmetric
monoidal category with:

• products and

• a comonad (S , ε, δ)

• which has a storage natural isomorphism s: S −→ S , i.e. a
comonoidal transformation from X as a smc wrt × to X as a
smc wrt ⊗.

This gives natural isos

s1: S(1) −→ > and s2: S(X × Y ) −→ S(X )⊗ S(Y )

satisfying “obvious” coherence conditions.

(These categories are precisely what is needed to model MELL
without −◦ but with products.)
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⊗-linear categories

Proposition: The linear maps of a Cartesian storage category with
⊗-representability form a ⊗-storage category; conversely, the
coKleisli category of a ⊗-storage category is a Cartesian storage
category with ⊗-representability.

The second claim follows from showing that the comonad is canonically
forceful; the force is given by

S(A× S(X ))
s2−−→ S(A)⊗ S2(X )

1⊗ ε−−−−→ S(A)⊗ S(X )
s−1
2−−−→ S(A× X )

We will say X is a ⊗-linear category if it is an exact ⊗-storage
category, or equivalently, the linear maps of a ⊗-representable
Cartesian storage category.

19 / 25



⊗-representable Cartesian storage categories

To repeat:

Proposition: A ⊗-representable Cartesian storage category is
precisely the coKleisli category of a ⊗-storage category.

Proposition: Any ⊗-linear category may be represented as the
subcategory of linear maps of a ⊗-representable Cartesian storage
category.

It now remains to add a differential operator to this setup . . .
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Cartesian differential storage categories

Proposition: Suppose X is a Cartesian storage category. TFAE:

1. X is a Cartesian differential category for which Diff-linear =
L-linear

2. X is a Cartesian differential category for which
η = 〈1, 0〉D×[ϕ] is L-linear

3. X has a deriving transformation

where in a CDC, f being Diff-linear means D×[f ] = π0f , and

where a deriving transformation is an (unnatural) transformation

d×:A× A −→ S(A) satisfying a number (10!) of axioms.

A Cartesian differential storage category is a CSC satisfying any of
the above equivalent conditions.

21 / 25



Deriving transformation axioms

[cd.1] d×S(0)ε = 0 and d×S(f + g)ε = d×(S(f ) + S(g))ε

[cd.2] 〈h + k , f 〉d× = 〈h, f 〉d× + 〈k, f 〉d× and 〈0, f 〉d× = 0

[cd.3] d×ε = π0

[cd.4] d×S(〈f , g〉)ε = d×〈S(f )ε, S(g)ε〉
[cd.5] d×S(fg)ε = 〈d×S(f )ε, π1f 〉d×S(g)ε

[cd.6] 〈〈g , 0〉, 〈h, k〉〉d×S(d×S(f )ε)ε = 〈g , k〉d×S(f )ε

[cd.7] 〈〈0, h〉, 〈g , k〉〉d×S(d×S(f )ε)ε =
〈〈0, g〉, 〈h, k〉〉d×S(d×S(f )ε)ε

[cd.8] 〈1, 0〉d× is ε-natural

[cd.9] (ε⊗ 1)s−1
2 S(d×)ε = (S(ε)⊗ 1)s−1

2 S(d×)ε

[cd.10] (η ⊗ 1)∇ = (η ⊗ 1)s−1
2 S(d×)ε

where ∇ is the codiagonal in the canonical bialgebra structure on a
⊗-storage category (see our [2006] paper for details).
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Split linear idempotents

Any Cartesian storage category in which linear idempotents split in
every slice and which has “codereliction” η:A −→ S(A) (a natural
transformation which is linear and splits ε, so ηAεA = 1A)
automatically is ⊗-representable.

Hence if linear idempotents split, being a Cartesian differential
storage category is equivalent to being the coKleisli category of a
⊗-differential ⊗-storage category.

And the linear maps of such a Cartesian differential storage
category form a ⊗-differential ⊗-storage category.
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Conclusion

So, in the “abstract” world we have the correspondance we hoped
for. What remains is the embedding theorems which put
“concrete” differential categories (Cartesian and ⊗) into that
abstract world.
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To be continued . . .
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