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Theorem 1 Peano arithmetic is a conservative extension of Heyting arithmetic
for TIS sentences.

1 Heyting and Peano arithmetic

Definition Heyting arithmetic (HA) and Peano arithmetic (PA) are formal
systems based on the following language L:

L is a first-order-language, with logical constants L, A, V, —, V¥, 3, numerical
variables z, y, z. .., a constant 0, a unary function constant S, constant function
symbols for all primitive recursive functions (indicated by F, G, H...) and a
single binary predicate constant =. Terms and formulas are defined as usual.
Formulas are indicated by ®, ¥... and —=® abbreviates ® — L.

The azioms and rules of HA (PA, respectively) are the axioms and rules of
intuitionistic (respectively classical) first-order predicate logic (e.g. in a standard
Hilbert-style formalization or one of several natural or sequent calculi) together
with the following non-logical axioms:

r==z (refl)
r=yANz=y—oxr=2z (trans)
vi=12, > F(w1,..., 2 ..., ¢n) = F(xq,...,2), ..., x,) (congr)

for any n-ary function constant F, 1 < i < n,
Sx # 0 (as abbreviation for S =0 — 1) (succl)
Sx=Sy—zx=y (succ2)
furthermore all instances of the axiom schema

D0 AV (Px — P(Sz)) — Vada (ind)

as well as defining axioms for all primitive recursive functions. Every primitive
recursive function F except the O-ary 0 and the l-ary S is defined by exactly
one axiom of one of the following forms:

F(Ila"'ax’ia"'v'rn):xi (p'f’OjF)



F(z1,...,zn) = GHi(z1,.. ., 20), ..., Hn(z1, ..., 20)) (compr)

F(0,21,...,25) = G(z1,...,2y)
ANF(Sy,z1,...,2n) = HE(y, 21, .-, Z0n), Yy T1,y . -+, Tny) (recr)

where G, H, Hy, ..., H,, have been defined before. [Tro73]

Note that HA and PA differ only in that HA uses intuitionistic, PA classical
logic. We therefore have the immediate

Lemma 2 Fyp ® = Fpy @ for any formula @ € L. O

The next lemma states that every quantifier-free formula is essentially of the
form F(z1,...,2,) = 0, where F is a primitive recursive function symbol and
Z1,...,%n the (free) variables of the formula.

Lemma 3 Let ¥ be any formula without quantifiers and with (free) variables
Z1,...,Tn. Then there is an n-ary primitive recursive function symbol F of L
with Fua U < F(x1,...,2,) = 0. (4> is the usual abbreviation).

Proof: Note first that the 2-ary functions + (addition), - (multiplication) and
=~ (cut-off subtraction) are primitive recursive ([Tro88], p. 116), and that the
following are provable: Fgy 2 =0Ay=0+2+y=0, Fga =0V y =
0c2y=0, tya 2=0—-y =0« (1-2)-(1-y) =0, tya L+ Sz =0.
From this it should be clear how the proof goes by induction on the structure
of U. ]

Definition II3 C £ is the class of all formulas of the form
(Vo) (Vaa) ... (V2;) By1) Fya) ... (Fy,) ¥
where 4,5 > 0 and ¥ quantifier-free.
Lemma 4 Every closed formula ® € 113 is HA-provably equivalent to
(Va)(Fy)F(z,y) = 0

for some primitive recursive function symbol F.

Proof: Successive quantifiers of the same kind can be contracted by pairing; if
additional quantifiers are necessary, “dummy” variables can be introduced. The
existence of F follows from Lemma 3. a

2 Motivation of Theorem 1

Looking back at Theorem 1, it tells us that PA and HA have the same provable
119 formulas. Before we start proving this, let me try to motivate it a bit.



Observe that in HA (with a natural style system for the underlying logic)
the following easy induction yields a proof for (Vz)z =0V x # 0:

(succl)
Sz #0
(refl) St=0VvSz#0
0 r=0Vz#0—->Sxr=0VSx#0
VO#0 (V) (x=0Vax#0—Szr=0V Sz #0)
(Vr)x=0Vax#0

(ind)

By application of the V-elim rule we can therefore get
Faua F(z1,...,2,) =0V F(x1,...,2,) #0

for every n-ary primitive recursive function symbol F, and with lemma 3 for
every quantifier-free formula W:

Faa ¥V U,

We can therefore say that Heyting arithmetic has a certain amount of classical
logic already “built in.”

But don’t be pleased too early. Our above discovery says nothing about for-
mulas with quantifiers. For example, if ® = (Va)¥ with quantifier-free ¥, then
by the above method we can easily get Fua (Va)(¥ V =), but this allows us
not to conclude Fpa ® V —®. Perhaps we can now more appreciate Theorem 1,
that assures us that HA has classical logic “built in” even for (quantified) 19
formulas. This result is particularly nice because many statements of arithmetic
can be expressed in [T form. As an example we take the formula

(Va)(3y)(y > = A prime(y) = 0),

where prime is the characteristic function of the prime numbers (prime and >
are primitive recursive, cf. [Tro88], p. 117). The formula states that there are
infinitely many prime numbers. The best known proof for this fact is typically
non-constructive, starting with the words “suppose not.” However, once we
have established Theorem 1 we get a constructive proof for the existence of
infinitely many prime numbers for free.

The argument that we give here to prove Theorem 1 is due to H. Friedman
[Fri78]. Other proofs were known earlier, but they were much more painful and
required a delicate proof theoretic or semantic analysis, which we will not need.
In the following we introduce two translations of formulas and some basic facts
about them. The proofs are straightforward.

3 Double negation translation

Definition The double negation translation ®° of some first-order formula
® is defined by adding “——" before every atomic, disjunctive or existential



subformula:

1° = 1
P° = =D where ® # | atomic
(PAT) = P°AT°
(dDVT)° = —=(P°VT°)
(®—=T)° = P°—=0°
(Vz®)® = Vz(d°)
(Fz®)° = -—3z(®°)

Lemma 5 Let ¢ stand for classical, 1 for intuitionistic deducibility. The
double negation translation has the following properties (® a formula, T' a set
of formulas, where I'° = {¥°|W € T'}):

1. Fo ®° ¢ ®

2. =—®° F; P°

3.1 k¢ ®=T1° +; ®°

4. In general not ® +; ®° O

In particular property 3 is interesting; it says that classical logic is embed-
ded into (or reduced to) intuitionistic logic; therefore the term double negation
“translation.” Note that the converse of 3 trivially holds with 1. A counterex-
ample for 4 is & = —VaVz.

4 A-translation

Definition Let A and ® be formulas such that no bound variable of ® is
free in A. The A-translation ® 4 of some first-order formula ® is defined by
simultaneously replacing every atomic subformula ¥ by ¥V A:

1lga = A
by, = OV A where ® # 1 atomic
(@/\‘I/)A = O4 AUy
(@\/‘I/)A = OuV Uy
(‘I)—>\I’)A = (I)A—>\IJA
(VCL“I))A = V.’L‘(‘I)A)
(Fx®)a = Fz(Da)

Here it is important that —® is only an abbreviation for ® — 1; note that
the A-translation of =® is not ~® 4.



Lemma 6 The A-translation has the following properties (® a formula and T
a set of formulas, such that ®4 and T4 are defined, where T'y = {U 4|V € T'}):

1. F¢ 4PV A

2. A &y

3T FH &=T4 k1 ©4

4. In general not ® 1 &y O

The proof of property 3 is a bit tricky where eigenvariable conditions are
involved. The rest is straightforward. Note that & = == A is a counterexample
for 4.

5 Proof of Theorem 1

The proof goes in two steps. Given Fpa (Jy)F(x,y) = 0 we first conclude Fpa
—=(3y)F(z,y) = 0, using double negation translation, then Fya (Jy)F(z,y) =
0, using A-translation. The proof will last on the following crucial properties of
the axioms that we stated in Section 1:

Lemma 7 For every non-logical axziom V of Heyting/Peano arithmetic (includ-
ing instances of axiom schemata) both translations ¥° and V4 are provable in
HA.

Proof: Note that from property 4 in Lemmas 5 and 6 this is not true for
a general formula ¥. However, if ¥ is of the form ®, ®; A 3, &; — P5 or
Dy A Dy — &3 (where @, §q, $o, 3 atomic), then we can easily show ¥ +y ¥°
and ¥ F; U4, All axioms except (ind) are of this form. Suppose now ¥ is an
instance of (ind):

U =90 AV (dxr — P(Sz)) — Vadx
for some formula ®z. Then
U° = P°0 AV (d°z — &°(Sx)) — Vad x,
Uy =040 AVe(Pax — P4(Sz)) = Vadax,
which are themselves axioms of HA. a
Corollary 8 The following hold for all formulas ® € L:
1. Fpa @ = tpga @°

2. Fga ® = Fua @A, if ® 4 defined.



Proof: 1. If ' are the non-logical axioms of PA used in the proof of Fpy @,
then
r l_C ® Lemma 5.3 1_\0 I_I (I)O Lemma 7 l_HA (I)o.

2. If T are the non-logical axioms of HA used in the proof of Fya @, then
Db @500, by @ PR T By,
O

Proof of Theorem 1: If Fpy (Jy)F(z,y) =0 then Fpa ——(Fy)F(z,y) =0
by the Corollary. Having Fga (((3y)F(z,y) = 0) > L) — L, using A =
(Fy)F(x,y) = 0, we have

hence Fga (y)F(z,y) = 0. m|

Note that this argument can easily be applied to theories other than HA | as
long as their axioms satisfy Lemma 7. Friedman does this in his paper [Fri78]
for the theory of finite types and for Zermelo-Fraenkel set theory. A further
development of Friedman’s methods is found in [Lev85], where in particular
large classes of axioms satisfying Lemma 7 are described syntactically.
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