A lambda calculus for quantum computation with
classical control

Peter Selinger, Benoit Valiron

Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Ontario K1IN 6N5, Canada

Abstract The objective of this paper is to develop a functional programming
language for quantum computers. We develop a lambda calculus for the classical
control model, following the first author’s work on quantum flow-charts. We de-
fine a call-by-value operational semantics, and we give a type system using affine
intuitionistic linear logic. The main results of this paper are the safety properties
of the language and the development of a type inference algorithm.

1 Introduction

The objective of this paper is to develop a functional programming language for quan-
tum computers. Quantum computing is a theory of computation based on the laws of
quantum physics, rather than of classical physics. Quantum computing has become a
fast growing research area in recent years. For a good introduction, see e.g. [9,10].

Due to the laws of quantum physics, there are only two kinds of basic operations
that one can perform on a quantum state, namelyary transformationsand mea-
surementsMany existing formalisms for quantum computation put an emphasis on the
former, i.e., a computation is understood as the evolution of a quantum state by means
of unitary gates. Measurements are usually performed at the end of the computation,
and outside of the formalism. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts. One example of such a model
is the quantum Turing machine [3,6], where the entire machine state, including the tape,
the finite control, and the position of the head, is assumed to be in quantum superposi-
tion. Another example is the quantum lambda calculus of van Tonder [14,15], which is
a higher-order, purely quantum language without an explicit measurement operation.

On the other hand, one might imagine a model of a quantum computer where uni-
tary operations and measurements can be interleaved. One example is the so-called
QRAM modebf Knill [8], which is also described by Bettelli, Calarco and Serafini [4].
Here, a quantum computer consists of a classical computer connected to a quantum
device. In this configuration, the operation of the machine is controlled by a classical
program which emits a sequence of instructions to the quantum device for performing
measurements and unitary operations. In such a model, the control structures of the ma-
chine are classical, and only the data being operated upon is quantum. This situation is
summarized by the slogan “quantum data, classical control” [12]. Several programming
languages have been proposed to deal with such a model [4,11]. The present paper is
based on the work of [12].

2 P. Selinger, B. Valiron

In this paper, we proposetagher-orderquantum programming language, i.e., one
in which functions can be considered as data. A program is a lambda term, possibly
with some quantum data embedded inside. The basic idea is that lambda terms encode
the control structure of a program, and thus, they would be implemented classically, i.e.,
on the classical device of the QRAM machine. However, the data on which the lambda
terms act is possibly quantum, and is stored on the QRAM quantum device.

Because our language combines classical and quantum features, it is natural to con-
sider two distinct basic data types: a typectdssical bitsand a type ofjuantum bits
They behave very differently. For instance, a classical bit can be copied as many times
as needed. On the other hand, a quantum bit cannot be duplicated, due to the well-
knownno cloning propertyof quantum states [9,10]. However, quantum data types are
very powerful, due to the phenomena of quantum superposition and entanglement.

The semantics described in this paper is operational; a program is an abstract ma-
chine with reductions rules. The reduction rules are probabilistic.

Some care is needed when defining a type system for higher-order quantum func-
tions. This is because the question of whether a function is duplicable or not cannot
be directly seen from the types of its arguments or of its value, but rather it depends
on the types of any free variables occurring in the function definition. As it turns out,
the appropriate type system for higher-order quantum functions in our setting is affine
intuitionistic linear logic.

We also address the question of finding a type inference algorithm. Using the remark
that a linear type is a decoration of an intuitionistic one, we show that the question of
deciding whether or not a program is valid can be reduced to the question of finding an
intuitionistic type for it and to explore a finite number of linear decorations for the type.

This work is based on the second author’'s Master’s thesis [13].

2 Quantum computing basics

We briefly recall the basic definitions of quantum computing; please see [9,10] for a
complete introduction to the subject. The basic unit of information in quantum compu-
tation is a quantum bit aqubit The state of a single qubit is a a normalized vector of the
2-dimensional Hilbert spacg?. We denote the standard basi€ifas{|0), |1)}, so that
the general state of a single qubit can be written/@$ + 3|1), where|a|? + |8]? = 1.

The state of: qubits is a normalized vector in?* ,C? = C2". We write [zy) =
|z) ® |y), so that a standard basis vector@t can be denoteffi ™), where™i " is
the binary representation oin » digits, for0 < i < 2™. As a special case, if = 0,
we denote the unique standard basis vectdt irby |).

The basic operations on quantum states are unitary operations and measurements.
A unitary operation maps anqubit state to am-qubit state, and is given by a unitary
2" x 2™-matrix. It is common to assume that the computational model provides a certain
set of built-in unitary operations, including for example th@damard gated and the
controlled not-gateCNOT, among others:

1000
1 11 0100
H—ﬁ(1_1)v CNOT=10001

0010

Functional Programming for Quantum Computation 3

The measurement acts as a projection. When a quibjt+ 3|1) is measured, the
observed outcome is a classical bit. The two possible outconaesi 1 are observed
with probabilities|a|? and| 3|2, respectively. Moreover, the state of the qubit is affected
by the measurement, and collapse®}af 0 was observed, and o) if 1 was observed.
More generally, given an-qubit statd¢) = a¢|0) @ [¢o) + a1|1) & |11), where|yy)
and|y;) are normalizedn — 1)-qubit states, then measuring the leftmost qubit results
in the answef with probability |o;|?, and the resulting state will Hé) © |1;).

3 The untyped quantum lambda calculus

3.1 Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed in-
troduction to the lambda calculus, see e.qg. [2]. We start from a standard lambda calculus
with booleans and finite products. We extend this language with three special quantum
operations, which areew, meas, and built-in unitary gatesiew maps a classical bit to

a quantum bitmeas maps a quantum bit to a classical bit by performing a measurement
operation; this is a probabilistic operation. Finally, we assume that there 9" saft
built-in n-ary unitary gates for eaoh We use the lettel/ to range over built-in unitary
gates. Thus, the syntax of our language is as follows:

Term M,N,P == x| MN | x.]M| if M then N else P|0| 1| meas
| new |U | x | (M,N) | let {(x,y)=M in N,

We follow Barendregt's convention for identifying terms updteequivalence. We also
sometimes use the shorthand notatidf, ..., M,,) = (M, (Mo, ...)).

3.2 Programs

The reader will have noticed that we have not provided a syntax for constant quantum
states such as|0) + §|1) in our language. One may ask why we did not allow the
insertion of quantum states into a lambda term, suchzagy|0) + 3|1)). The reason

is that, in the general case, such a syntax would be insufficient. Consider for instance
the lambda term(Ay.Af.fpy)(¢), wherep and ¢ are entangled quantum bits in the
state|pg) = «|00) + $|11). Such a state cannot be represented locally by replacing
p andq with some constant qubit expressions. The non-local nature of quantum states
thus forces us to introduce a level of indirection into the representation of a state of a
quantum program.

Definition 1. A program states represented by a trip[€), L, M|, where

- @ is a normalized vector ab’'~ C2, for somen > 0

— M is alambda term,

— Lisafunction fromiV t0{0,...,n—1}, whereFV (M) CW C Ve Lis also
called thdinking functionor thequbit environment

The purpose of the linking function is to assign specific free variable®/ ab
specific quantum bits ifY. The notion ofa-equivalence extends naturally to programs,
for instance, the statd§l), {x — 0}, Ay.z] and[|1),{z — 0}, \y.z] are equivalent.
The set of program states, updeequivalence, is denoted Sy

4 P. Selinger, B. Valiron

Convention 1.In order to simplify the notation, we will often use the following conven-
tion: we usep; to denote the free variablesuch thatl(z) = 4. A program|Q, L, M|
is abbreviated toQ, M'] with M’ = M{p;, /z1] ... [pi, /Tn], Wherei, = L(zy).

3.3 Linearity

An important well-formedness property of quantum programs is that quantum bits
should always beiniquely referencedroughly, this means that no two variable oc-
currences should refer to the same physical quantum bit. The reason for this restriction
is the well-known no-cloning property of quantum physics, which states that a quantum
bit cannot be duplicated: there exists no physically meaningful operation which maps
an arbitrary quantum bjt) to |¢) ® |).

Syntactically, the requirement of unique referencing translates ilibearity con-
dition: A lambda abstractionz.M is calledlinear if the variablex is used at most
once during the evaluation @f/. A well-formed program should be such that quantum
data is only used linearly; however, classical data, such as ordinary bits, can of course
be used non-linearly. Since the decision of which subterms must be used linearly de-
pends on type information, we will not formally enforce any linearity constraints until
we discuss a type system in Section 4; nevertheless, we will assume that all our untyped
examples are well-formed in the above sense.

3.4 Evaluation strategy

As is usual in defining a programming language, we need to settle on a reduction strat-
egy. The obvious candidates are call-by-name and call-by-value. Because of the proba-
bilistic nature of measurement, the choice of reduction strategy affects the behavior of
programs, not just in terms of efficiency, but in terms of the actual answer computed.
We demonstrate this in an example. lpdtis be the boolean addition function, which

is definable aplus = Azy.if © then (if y then 0 else 1) else (if y then 1 else 0).
Consider the termi{ = (Az.plus z x)(meas(H (new 0))).

Call-by-value. Reducing this in the empty environment, using the call-by-value reduc-
tion strategy, we obtain the following reductions:

—cpv [|0), (Az.plus x z)(meas(H po))]
—CBV [\/L—(\O) + (1)), (Axz.plus z z)(meas po)

]
[[0), \z-plus & 2)(0)] e -
[11), (Az.plus z z)(1)] cBv [1),plus 1 1] cBv [11),0]

each with a probability of /2. Thus, under call-by-value reduction, this program pro-
duces the boolean valwewith probability 1. Note that we have used Convention 1 for
writing these program states.

——CBV {

Call-by-name.Reducing the same term under the call-by-name strategy, we obtain in
one sted |), plus (meas(H (new 0))) (meas(H (new 0))))], and then with probabil-

ity 1/4,[|01),1],[|10),1],]1]00),0] or[|11),0]. Therefore, the boolean output of
this function is0 or 1 with equal probability.

Functional Programming for Quantum Computation 5

Mixed strategy. Moreover, if we mix the two reduction strategies, the program can
even reduce to an ill-formed term. Namely, reducing by call-by-value [JI\E%I(|O> +

1)), (Az.plus z z)(meas po)], and then changing to call-by-name, we obtain in one
step the ternj%(|0> + |1)), (plus (meas po) (meas po)], which is not a valid pro-
gram since there af2occurrences gby.

In the remainder of this paper, we will only consider the call-by-value reduction strat-
egy, which seems to us to be the most natural.

3.5 Probabilistic reduction systems

In order to formalize the operational semantics of the quantum lambda calculus, we
need to introduce the notion of a probabilistic reduction system.

Definition 2. A probabilistic reduction systeiis a tuple(X, U, R, prob) whereX is a

set ofstatesU C X is a subset ofalue statesk C (X \U) x X is a set ofeductions

andprob : R — [0,1] is aprobability function where[0, 1] is the real unit interval.
Moreover, we impose the following conditions:

— Foranyz € X, R, = {2’ | (z,2') € R } is finite.
- Zz’eRz prob(z, ') <1

We callprob the one-step reduction, and dengte— , y to beprob(z,y) = p. Let
us extencprob to then-step reduction

0if xz#uy
0 _
prob (x,y) “V1if = y
1 _ [prob(z,y)if (z,y) €R
prob*(z,y) = 0 else

prob" ™ (z,y) =3 . g, prob(x, 2)prob® (z,y),

and the notation is extendedto—} y to mearprob™ (z,y) = p.

We say thaty is reachable in one step with non-zero probabilitpm =, denoted
r — >0y Whenz —, y with p > 0. We say thay is reachable with non-zero proba-
bility from x, denoted: — "¢ y when there exista such that — 7 y with p > 0.

We can then compute the probability to reack U from z: It is a function from
X x U to R defined byproby (z,u) = Y,°, prob™(z,u). The total probability for
reachingl fromz is proby (x) = >-0") >, cpy prob™(x, u).

On the other hand, there is also the probabilitditcergefrom z, or never reaching
anything. This value igrobec (z) = limp 00 D, c x Prob™ (z,y).

Lemma 1. Forall x € X, proby (z) + probs (z) < 1.

We define therror probability ofz to be the numbeprob.,, (x) = 1 —proby (z) —
probes ().

Definition 3. We can define a notion of equivalenceXn

o proby (x,u) = proby (y, u)
=~y iff VYue U{pmboo(x) = prob. (y)

6 P. Selinger, B. Valiron

Definition 4. In addition to the notion of reachability with non-zero probability, there
is also a weaker notion of reachability, given ByWe will say thaty is reachablefrom

x if xRy. By the properties oprob, r — <o y impliesz ~~ y with z ~~ y for x Ry. Let

us denote by—* the relation such that ~* y iff there existsn such thate R™y, with

R™ defined as the-th composition ofk. Similarly,z — *<¢ y impliesz ~* y.

Definition 5. In a probabilistic reduction system, a statés called anerror-stateif
x ¢ Uand)_ . prob(z,2') < 1. An elementz € X is consistentif there is no
error-statee such thate ~~* e.

Lemma 2. If x is consistent, theprob,,..(x) = 0. The converse is false.

Remark 1.We need the weaker notion of reachability- * , in addition to reachability

with non-zero probabilityr — ~¢* y, because a null probability of getting a certain
result is not an absolute warranty of its impossibility. In the QRAM, suppose we have
a qubit in statg0). Measuring it cannot theoretically yield the valuebut in practice,

this might happen with small probability, due to imprecision of the physical operations
and decoherence. Therefore, when we prove type safety (see Theorem 2), we will use
the stronger notion. In short: a type-safe program should not crash, even in the event of
random QRAM errors.

3.6 Operational semantics

We will define a probabilistic call-by-value reduction procedure for the quantum lambda
calculus. Note that, although the reduction itself is probabilistic, the choice of which
redex to reduce at each step is deterministic.

Definition 6. A valueis a term of the following form:
Value VW = x| Xx.M|0]1]| meas | new |U| x | (V,W).
The set ofvalue statess V = {[Q, L, V] € S| V € Value}.

The reduction rules are shown in Table 1, where we have used Convention 1 to
shorten the description of states. We wiii¢g, L, M| —, [Q’, L', M'] for a single-
step reduction of states which takes place with probahilitin the rule for reducing

the termU(p,,, ..., p,.), U is ann-ary built-in unitary gatej1,..., j, are pairwise
distinct, andQ’ is the quantum state obtained fraghby applying this gate to qubits
Jis-- -, jn- Inthe rule for measurement) o) and|Q,) are normalized states of the form

Qo) = >, al89) ®10) @ [¢9) and|Q1) = 3, Bj[¢}) @ [1) ® [}), whereg? andg}
is ani-qubit state (so that the measured qubit is the one pointed#g)bin the rule for
for new, @ is ann-qubit state, so thad ® |i) is an(n + 1)-qubit state, ang,, refers to
its rightmost qubit.

We define a weaker relation. This relation models the transformations that can
happen in the presence of decoherence and imprecision of physical operations. We de-
fine [Q, M] ~ [Q', M'] to be[Q, M] —, [Q’, M'], even wherp = 0, plus the addi-
tional rule, if @ andQ’ are vectors of equal dimensior§), M] ~~ [Q’, M].

Functional Programming for Quantum Computation 7

(@, (Az.M)V] —1 [Q, M[V/z]]

(@, N] — [Q', N']
(Q, MN] — [Q', MN']

[Q, if 0 then M else N| —1 [Q, N]

[Q,if 1 then M else N] —1 [Q, M]

(Q, M] —, [Q, M] Q. U®jis -3 pin)] —1 [Q (Psrs - -1 Psn)]
Q,MV] —, [Q', M'V] [@]|Qo) + B|Q1), meas pi] — 42 [|Qo), 0]
(Q, M1] — [Q', M{] [@]Qo) + BIQ1), meas pi] — g2 [|Q1), 1]
[Q <M17M2>] —p [<M17M2>] [Q, new 0] — [Q® |0)7pn]
(Q, Ma] — [Q', M3]
[Q, new 1] —1 [Q ®@ 1), pn]
Q. Vi, M) —, (@, Vi, M3)] g

@,
(@, if P then M else N] —, [Q’, if P’ then M else N]

Pl —

]

(Q, M] —p [Q', M']

[@Q,let (x1,22) = M in N] —,, [Q’,let (z1,x2) = M’ in N]

(@, let (z1, x2) = (V1,V2) in N| —1 [Q, N[V /1, Va/z2]]

p [Q, P]

Table 1. Reductions rules of the quantum lambda calculus

Lemma 3. Letprob be the function such that far, y € S, prob(z,y) =pifc —, y
ando else. Ther{S, V, ~-, prob) is a probabilistic reduction systerl

This probabilistic reduction system has error states, for exarf@le{ (\z.x)] or
[Q, U{po, po)]. Such error states correspond to run-time errors. In the next section, we
introduce a type system designed to rule out such error states.

4 The typed quantum lambda-calculus

We will now define a type system designed to eliminate all run-time errors arising from
the reduction system of the previous section. We need base types (suthiadqbit),
function types, and product types. In addition, we need the type system to capture a
notion of duplicability, as discussed in Section 3.3. We follow the notation of linear
logic [7]. By default, a term of typel is assumed to be non-duplicable, and duplicable
terms are given the typed instead. Formally, the set of types is defined as follows,
wherea ranges over a set of type constants ahdanges over a countable set of type
variables:

qType A,B := «a|X|!A|(A—B)|T|(A®B)

Note that, because all terms are assumed to be non-duplicable by default, the language
has a linear function typel — B and a linear product typd ® B. This reflects the

fact that there is in general no canonical diagonal funcilor» A ® A. Also, T is

the linear unit type. This will be made more formal in the typing rules below. We write

™ A for ! . 1A, with n repetitions of. We also writed™ for the n-fold tensor product
AR...®A.

8 P. Selinger, B. Valiron

4.1 Subtyping

The typing rules will ensure that any value of typé is duplicable. However, there
is no harm in using it only once; thus, such a value should also havedyper this
reason, we define a subtyping relatiaras follows:

A< B

A< B
T<T () A< B = ()

A< BV

(var) (D)

o< o (az) X<X

Ai < By As < By (®) A< A B< B (=)
A1 ® Ay < B1 ® By A'—~wB<A—oB

Lemma 4. FortypesA andB, if A< Band(m =0)V(n > 1),thenl”A<!™B. O
Notice that one can rewrite types using the notation:
qType A,B == I"a|"X|"(A—B)|!"T |!"(A® B)

with n € N. Using the overall condition on andm that(m = 0) V (n > 1), the rules
can be re-written as:

vars)

X X e <1 (@) ot (1)

A1 < By Ay < By) A< A B<B ()
I"(A; ® Ay) < !™(By ® By) (A — B)<1™(A—B) * °

The two sets of rules are equivalent.
Lemma 5. The rules of the second set are reversible. O

Lemma 6. (¢Type, <) is reflexive and transitive. If we define an equivalence relation
=byA=Biff A< BandB < A, (¢Type/=, <) is a poset. O

Lemma 7. If A < !B, then there exist€ such thatd = !C. O

Remark 2.The subtyping rules are a syntactic device, and are not intended to catch
all plausible type isomorphisms. For instance, the types !B and!(A ® B) are not
subtypes of each other, although an isomorphism between these types is easily definable
in the language.

4.2 Typing rules

We need to define what it means for a quantum §tatd., M| to be well-typed. It turns
out that the typing does not depend @rand L, but only onM. We introduce typing
judgments of the formA > M : B. HereM is aterm,B is aqType, andA is a typing
context, i.e., a function from a set of variables¢®ype. As usual, we writg A| for
the domain of4, and we denote typing contexts @as: A1, ..., z,:A,. As usual, we
write A, z: A for AU {x:A} if © € |A|. Also, if A = z1:A4,,...,2,:A,, we write
1A =x1:1A4, ..., z,:1A,. Atyping judgement is calledalid if it can be derived from
the rules in Table 2.

Functional Programming for Quantum Computation 9
A< B (az1) Ac.< B (
Ax:A>z: B Y Abc:B
IN,IA> P :bit I,)JAbM:A I A>N:A (i)
I1, [5,\A > if P then M else N : A ¢
N Ao M:A—B I3A>N:A
I, »'A>MN : B

azz)

(app)
If FV(M)N || =0:
A A>M:B A zA>M: B
Acoe M A=B M TNA Az M : "t (4 — B)
!A,F1 I>M1:!nA1 !A,FQDMQZ!”AQ (®I)
!A,F1,F2I><M1,M2>:!n(A1®A2) '

!A7F1 > M : !"(Al ®A2) 1A, I, 5L‘1:!nAl7 zo:"As >N : A
A, I, I > let(z1,22) = MinN: A

(A2)

Ap o I"T (M

(®.E)

Table 2. Typing rules

The typing rule(az) assumes that to every constantf the language, we have
associated a fixed typé.. The typesA. are defined as follows:

Ao = bit Apew = 1(bit —o gbit)
Ay = bit Ameas = 1(qbit —o 1bit) Ay = (gbit"™ —o gbit"™)

Note that we have given the typgit —o gbit) to the termnew. Another possible
choice would have beelf!bit — g¢bit), which makes sense because all classical bits
are duplicable. However, sin¢éit —o gbit) < |(1bit —o gbit), the second type is less
general, and can be inferred by the typing rules.

Note that, if[Q), L, M] is a program state, the terid need not be closed; however,
all of its free variables must be in the domainigfand thus must be of typgit. We
therefore define:

Definition 7. A program statd@, L, M] is well-typed of typeB if A> M : Bis
derivable, whereA = {z: gbit | x € FV(M)}. Inthis case, we writ?), L, M] : B.

Note that the type system enforces that variables holding quantum data cannot be
duplicated; thusjz.(x, =) is not a valid term of typebit —o gbit @ gbit. On the other
hand, we allow variables to be discarded freely. Other approaches are also possible,
for instance, Altenkirch and Grattage [1] propose a syntax that allows duplication but
restricts discarding of quantum values.

4.3 Example: quantum teleportation

Let us illustrate the quantum lambda calculus and the typing rules with an example. The
following is an implementation of the well-known quantum teleportation protocol (see
e.g. [9]). The purpose of the teleportation protocol is to send a qubit from locdtion

to locationB, using only classical communication and a pre-existing shared entangled

10 P. Selinger, B. Valiron

guantum state. In fact, this can be achieved by communicating only the content of two
classical bits.

In terms of functional programming, the teleportation procedure can be seen as the
creation of two non-duplicable functiorfs: gbit —o bit ® bit andg : bit ® bit —o gbit,
such thatf o g(x) = « for an arbitrary qubit:.

We start by defining the following functio8PR.: (T —o (gbit ® g¢bit)),
BellMeasure : !(gbit —o(gbit —o bit @ bit)), andU : !(gbit —o(bit ® bit —o qbit)):

EPR = \x.CNOT(H (new0), new 0),
BellMeasure = A\g2.Aq1.(let (x,y) = CNOT{q1, q2) in { meas(Hz), measy),
U = Ag. Mz, y).if xthen(if y then Ui1q else Uipq)

else(if y then Up1q else Uyoq),

10 01 10 01
Uoo—(01>7U01—<10>,U10—<O_1>,U11—<_10>-

The function EPR creates an entangled sta{\%(mo} + |11)). The function
BellMeasure performs a so-called Bell measurement, and the fundtigrerforms a
unitary correction on the qubit depending on the value of two classical bits. We can
now construct a pair of functions: gbit —o bit ® bit andg : bit ® bit —o gbit with the
above property by the following code:

where

let (z,y)=EPR %

in let f = BellMeasure x
inletg =Uy.
in (f,9).

The functionsf andg thus created do indeed have the desired property'that:) = z,
wherez is any qubit. Note that, sincéandg depend on the state of the quhitsindy,
respectively, these functions cannot be duplicated, which is reflected in the fact that the
types of f andg do not contain a top-level “!”.

4.4 Properties of the type system
We derive some basic properties of the type system.

Definition 8. We extend the subtyping relation to contexts by writifig: A’ if |A'| =
|Al and for allz in |A'], Ay (2) < A(z).

Lemma8. 1. Ifz ¢ FV(M)andA,z:A > M:B, thenA > M:B.
2. fA> M:A, thenl, A > M:A.
3. fI'<AandA> N: AandA < B, thenl' > N : B.

The next lemmaiis crucial in the proof of the substitution lemma. Note that it is only
true for a valud/, and in general fails for an arbitrary terid.

Functional Programming for Quantum Computation 11

Lemma 9. If Vis avalue andA >V : 1A, then for allz € FV(V), there exists some
U € qType such thatA(z) = U.

Proof. By induction onV.

B<lA
:Bp>a: A

— If V is a variabler, then the last rule in the derivation wag;—

SinceB <: 1A, B must be exponential by Lemma 7.

— If V' is a constant, thenF'V (V') = (0, hence the result holds vacuously.

— If V.= A\z.M, the only typing rule that applies i8\3), and A = TI',!A’ with
FV(M)N|A'| = 0. So everyy € FV (M) except maybe: is exponential. Since
FV(Ax.M) = (FV (M) \ {x}), this suffices.

— The remaining cases are similar. O

Lemma 10 (Substitution).If V' is a value such thal’;, A, z:Ax>M : Bandls, | A
V: A, thenl, I, !A> M[V/x] : B.

Corollary 1. If I',!A, z:A>M : Bandly,!AV : 1" A, thenly, I, !A>M[V/z]
B.

Proof. From Lemma 10 and Lemma 8(3).

Remark 3.We note that all the usual rules of affine intuitionistic linear logic are derived
rules of our type systenexcepfor the general promotion rule. However, the promotion
rule is derivable whefy is avalue

I'>V:A

'V IA.

4.5 Subject reduction and progress

Theorem 1 (Subject Reduction)Given[Q, L, M| : Band[Q, L, M|~*[Q’, L', M’],
then[Q’, L', M’] : B.

Proof. It suffices to show this fofQ, L, M] —, [Q’, L', M'], and we proceed by in-
duction on the rules in Table 1. The rd@, (Az.M)V] —1 [Q, M[V/z]] and the rule

for “let” use the substitution lemma. The remaining cases are direct applications of the
induction hypothesis. ad

Theorem 2 (Progress)Let [@Q, L, M] : B be a well-typed program. Thd®, L, M|
is not an error state in the sense of Definition 5. In particular, eitf@r L, M] is a
value, or else there exist some stgfg, L', M’] such tha{@, L, M| —, [Q', L', M’].
Moreover, the total probability of all possible single-step reductions ffQyL, M| is
1.

Corollary 2. Every sequence of reductions of a well-typed program either converges
to a value, or diverges.

The proof of the Progress Theorem is similar to the usual proof, with two small
differences. The first is the presence of probabilities, and the second is the fakf that
is not necessarily closed. However, all the free variable¥® @fre of typegbit, and this
property suffices to prove the following lemma, which generalizes the usual lemma on
the shape of closed well-typed values:

12 P. Selinger, B. Valiron

Lemma 11. Supposel = z1:¢bit, . .., x,:qbit, andV isavalue. IfA>V : A — B,
thenV is new, meas, U, or alambda abstraction. IA>>V : A® B, thenV = (V7,14).
If A>V :bit,thenV =0o0rV = 1. O

Proof of the Progress TheoremBy induction onM/. The claim follows immediately in
the cases wheh! is a value, or whet/ is a left-hand-side of one of the rules in Table 1
that have no hypotheses. Otherwise, using Lemma is one of the following:P N,
NV, (N, P), (V,N), if N then P else Q, let (x,y)=N in P, whereN is not a
value. In this case, the free variableséfare still all of typegbit, and by induction
hypothesis, the terrf), L, N] has reductions with total probability; and the rules in
Table 1 ensure that the same is true[t9r L, M]. O

5 Type inference algorithm

It is well-known that in the simply-typed lambda calculus, as well as in many program-
ming languages, satisfy thgrincipal type property every untyped expression has a
most general type, provided that it has any type at all. Since most principal types can
usually be determined automatically, the programmer can be relieved from the need to
write any types at all.

In the context of our quantum lambda calculus, it would be nice to have a type
inference algorithm; however, the principal type property fails due to the presence of
exponentialdA. Not only can an expression have several different types, but in general
none of the types is “most general”. For example, the t&fm= \zy.zy has possible
typesT; = (A — B) — (A — B) andTy = (A — B) — (A — B), among others.
Neither ofT; andT5; is a substitution instance of the other, and in fact the most general
type subsumin@’ andT; is X — X, which is not a valid type foi/. Also, neither of
T, andT5; is a subtype of the other, and the most general type of which they are both
subtypes i A — B) — (A — B), which is not a valid type foi/.

In the absence of the principal type property, we need to design a type inference
algorithm based on a different idea. The approach we follow is the one suggested by
V. Danos, J.-B. Joinet and H. Schellinx [5]. The basic idea is to view a linear type
as a “decoration” of an intuitionistic type. Our type inference algorithm is based on the
following technical fact, given below: if a given term has an intuitionistic type derivation
m, then it is linearly typable if and only if there exists a linear type derivation which is
a decoration ofr. Typability can therefore be decided by first doing intuitionistic type
inference, and then checking finitely many possible linear decorations.

5.1 Skeletons and decorations
The class ofntuitionistic typeds
iType UV = «a|lX|U=V)|(UxV)|T

wherea ranges over the type constants axiaver the type variables.
To eachA € ¢Type, we associate itt/pe skeleton A € iType, which is obtained

by removing all occurrences of" Conversely, everyJ € iType can be lifted to some
*U € ¢Type with no occurrences ofl®. Formally:

Functional Programming for Quantum Computation 13

Definition 9. Define functions : ¢Type — iType andé : i Type — qType by:

fing =, X=X tnT=T, d=—q, *X=X *T=T,
fI"(A—B)=TA=1B, *U=V)=%U - *V,
fi"(A® B) =TAx B, QU XV)=*U @ *V.

Lemma 12. If A <: B,thenTA = TB.If U € iType, thenU = 1*U.

Writing A » M : U for a typing judgement of the simply-typed lambda calculus,
we can extend the notion of skeleton to contexts, typing judgments, and derivations as
follows:
T{xlel, e ,:l?nZAn} = {l‘liTAl, e ,xanAn}
A>M:A)=(FAw M:TA).
From the rules in Table 2, it is immediate thatdfc> M : A is a valid typing judgment
in the quantum lambda-calculus, thépA > M : A) = (TA » M : TA) is a valid
typing judgment in the simply-typed lambda-calculus.
We now turn to the question of how an intuitionistic typing derivation can be “deco-
rated” with exponentials to yield a valid quantum typing derivation. These decorations
are going to be the heart of the quantum type inference algorithm.

Definition 10. Given A € ¢Type andU € iType, we define thelecorationl & A €
qType of U along A by

LU I"MA=I"(U% A),

2 U=V)»(A—-B)=U+ A—V % B),

3. UxV)v» (A®B)=(U% A®V % B), and in all other cases:
4. U A=*U.

The following lemma is the key to the quantum type inference algorithm:

Lemma 13. If M is well-typed in the quantum lambda-calculus with typing judgment
I'> M : A, then for any valid typing judgment » M : U in simply-typed lambda-
calculus with|A| = |I'|, the typing judgmen\ & I'> M : U & A is valid in the
quantum lambda-calculus.

5.2 Elimination of repeated exponentials

The type system in Section 4 allows types with repeated exponentials stidh\agile

this is useful for compositionality, it is not very convenient for type inference. We there-
fore consider a reformulation of the typing rules which only requires single exponen-
tials.

Lemma 14. The following are derived rules of the type system in Table 2, for, alle
{0,1}.
A TT > My 1Ay 1A T > My i 1A,
!A, Fl, I > <j\417]\/[2> : '('TAl X !UAQ)
A Ty > M '('TAl ® !UAQ) VA, I, x1:1A1, 29l As >N A
!A,Fl,FQ > |et<CC1,I2> =MinN:A

(®.1)

(2.E")

14 P. Selinger, B. Valiron

Lemma 15. If M is typable in the quantum lambda calculus by some derivatjdhen
M is typable in the system with the added rulesI’) and (®.E"), by a derivationr’
using no repeated exponentials. Moreovert, = 7. O

5.3 Description of the type inference algorithm

To decide the typability of a given terti, first note the following: ifM is not typable

in simply-typed lambda calculus, theW is not quantum typable. On the other hand,
supposeV/ admits a typing judgment » M : U in the simply-typed lambda calculus,
say with typing derivationr. Moreover, suppose without loss of generality that the
derivationT uses no dummy variables, i.e., each sequé&ne M’ : U’ of 7 satisfies
|I"| = FV(M'). Then by the proof of Lemma 13/ is quantum typable if and only if
M has a quantum derivation whose skeleton.i§hus we can perform type inference
in the quantum lambda-calculus in two steps:

1. Find an intuitionistic typing derivation, if any, using no dummy variables.
2. Find a decoration af which is a valid quantum typing derivation, if any.

Step(1) is known to be decidable. For st¢p), note that by Lemma 15, it suffices to
consider decorations af without repeated exponentials. Since there are only finitely
many such decorations, the typability bf is clearly a decidable problem. Also note
that if the algorithm succeeds, then it returns a possible typé/foHowever, it does
not return a description of all possible types.

It should further be noted that the space of all decorations @fhile exponential
in size, can be searched efficiently by solving a system of constraints. More precisely,
if we create a boolean variable for each place in the type derivation which potentially
can hold a “1”, then the constraints imposed by the linear type system can all be written
in the form of implicationsz; A ... A x, = y, wheren > 0, and negationsz. It
is well-known that such a system can be solved in polynomial time in the number of
variables and clauses, which is in turns polynomial in the size of the type derivation.
Note, however, that the size of the type derivation need not be polynomial in the size of
the termMM, as the type ofi/ can be of exponential size in the worst case.

6 Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based
on a linear typed lambda calculus. Compared to the quantum lambda calculus of van
Tonder [14,15], our language is characterized by the fact that it contains classical as well
as quantum features; for instance, we provide classical datatypes and measurements as
a primitive feature of our language. Moreover, we provide a subject reduction result
and a type inference algorithm. As the language shows, linearity constraints do not just
exist at base types, but also at higher types, due to the fact that higher-order function are
represented as closures which may in turns contain embedded quantum data. We have
shown that affine intuitionistic linear logic provides the right type system to deal with
this situation.

Functional Programming for Quantum Computation 15

There are many open problems for further work. An interesting question is whether
the syntax of this language can be extended to include recursion. Another question is
to study extensions of the type system, for instance with additive types as in linear
logic. One may also study alternative reduction strategies. In this paper, we have only
considered the call-by-value case; it would be interesting to see if there is a call-by-
name equivalent of this language. Finally, another important open problem is to find a
good denotational semantics for a higher order quantum programming language. One
approach for finding such a semantics is to extend the framework of Selinger [12] and
to identify an appropriate higher-order version of the notion of a superoperator.

References

1. T. Altenkirch and J. Grattage. A functional quantum programming language. Available from
arXiv:quant-ph/0409065, 2004.

2. H. P. BarendregfThe Lambda-Calculus, its Syntax and Semantickime 103 ofStudies in
Logic and the Foundation of Mathematiddorth Holland, second edition, 1984.

3. P.Benioff. The computer as a physical system: A microscopic quantum mechanical Hamilto-
nian model of computers as represented by Turing machileesnal of Statistical Physi¢s
22:563-591, 1980.

4. S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming.
The European Physical Journal,25(2):181-200, August 2003.

5. V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic derivations.
Archive for Mathematical Logic33:387-412, 1995.

6. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences400(1818):97-117, July 1985.

7. J.-Y. Girard. Linear logicTheoretical Computer Sciencg0(1):1-101, 1987.

8. E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los
Alamos National Laboratory, 1996.

9. M. A. Nielsen and I. L. ChuangQuantum Computation and Quantum Informatiddam-
bridge University Press, 2002.

10. J. Preskill. Lecture notes for Physics 229, quantum computation. Available from
http://www.theory.caltech.edu/people/preskill/ph229/#lecture, 1999.

11. J. W. Sanders and P. Zuliani. Quantum programming. In R. Backhouse and J. N. Oliveira,
editors,Mathematics of Program Construction: 5th International Conferenvcéume 1837
of Lecture Notes in Computer Sciengages 80-99, Ponte de Lima, Portugal, July 2000.
Springer-Verlag.

12. P. Selinger. Towards a quantum programming langubthematical Structures in Com-
puter Sciencgl4(4):527-586, 2004.

13. Benoit Valiron. A functional programming language for quantum computation with classical
control. Master’s thesis, University of Ottawa, September 2004.

14. A. van Tonder. Quantum computation, categorical semantics and linear logic. On arXiv:
quant-ph/0312174, 2003.

15. A.van Tonder. A lambda calculus for quantum computat®i®AM Journal of Computing
33(5):1109-1135, 2004. Available from arXiv:quant-ph/0307150.

