
ar
X

iv
:1

30
4.

33
90

v1
 [

cs
.P

L]
 1

1
A

pr
 2

01
3

Quipper: A Scalable Quantum Programming Language

Alexander S. Green
Dalhousie University

agreen@mathstat.dal.ca

Peter LeFanu Lumsdaine
Institute of Advanced Studies
p.l.lumsdaine@gmail.com

Neil J. Ross
Dalhousie University
Neil.JR.Ross@Dal.Ca

Peter Selinger
Dalhousie University

selinger@mathstat.dal.ca

Benoı̂t Valiron
University of Pennsylvania

benoit.valiron@monoidal.net

Abstract
The field of quantum algorithms is vibrant. Still, there is currently
a lack of programming languages for describing quantum compu-
tation on a practical scale, i.e., not just at the level of toyprob-
lems. We address this issue by introducing Quipper, a scalable, ex-
pressive, functional, higher-order quantum programming language.
Quipper has been used to program a diverse set of non-trivialquan-
tum algorithms, and can generate quantum gate representations us-
ing trillions of gates. It is geared towards a model of computation
that uses a classical computer to control a quantum device, but is
not dependent on any particular model of quantum hardware. Quip-
per has proven effective and easy to use, and opens the door towards
using formal methods to analyze quantum algorithms.

Keywords Quipper; Quantum Programming Languages

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

1. Introduction
The earliest computers, such as the ENIAC and EDVAC, were
both rare and difficult to program. The difficulty stemmed in part
from the need to express algorithms in a vocabulary suited tothe
particular hardware, ranging from function tables for the ENIAC
to more conventional arithmetic and movement operations for later
machines. The introduction of symbolic programming languages
such as FORTRAN (for “FORmula TRANslator”) solved a major
difficulty for the next generation of computing devices, by enabling
the specification of algorithms in a form more suitable for human
understanding, and then translating this specification into a form
executable by the machine. Thus, programming languages assumed
the important role of bridging a semantic gap between the human
and the computing device. This was achieved, among other things,
by two important principles: high-level abstractions and automated
bookkeeping.

Quantum computation, which was envisioned in the later part
of the 20th century, is a computational paradigm based on thelaws
of quantum physics. It has been amply demonstrated in the liter-
ature that quantum computing can, in theory, outperform classical
computing for certain classes of computational problems. The de-
sign of new quantum algorithms is a vibrant area, as witnessed by
the quantum algorithm “zoo” of S. Jordan [11], which references
45 algorithms and 160 papers, with no less than 14 written in 2011
and 2012.

Although quantum computing is not yet ready to move from the-
ory to practice, it is nevertheless possible to make informed guesses
of what form an eventual quantum computer may take, or more
importantly for programming language design, of theinterfaceby
which one may interact with such a quantum computer. It seems
wise, then, to apply the lessons learned from programming classi-
cal computing to the emerging quantum computing capabilities.

This paper is a stepping stone towards meeting this challenge.
We approach quantum computation from a programmer’s perspec-
tive: how should one design a programming language that can im-
plement real-world quantum algorithms in an efficient, legible and
maintainable way? We introduce Quipper, a declarative language
with a monadic operational semantics that is succinct, expressive,
and scalable, with a sound theoretical foundation.

When we speak of Quipper being “scalable”, we mean that it
goes well beyond toy algorithms and mere proofs of concept. Many
actual quantum algorithms in the literature are orders of magnitude
more complex than what could be realistically implemented in pre-
viously existing quantum programming languages. We put Quipper
to the test by implementing seven non-trivial quantum algorithms
from the literature:
• Binary Welded Tree (BWT). To find a labeled node in a

graph [4].
• Boolean Formula (BF). To evaluate a NAND formula [2]. The

version of this algorithm implemented in Quipper computes a
winning strategy for the game of Hex.

• Class Number (CL). To approximate the class group of a real
quadratic number field [8].

• Ground State Estimation (GSE). To compute the ground state
energy level of a particular molecule [23].

• Quantum Linear Systems (QLS). To solve a linear system of
equations [9].

• Unique Shortest Vector (USV). To choose the shortest vector
among a given set [17].

• Triangle Finding (TF). To exhibit a triangle inside a dense
graph [13].

These algorithms were chosen by IARPA, in the context of its QCS
program [10], to provide a reasonably representative cross-section
of current algorithms. They make use of a wide variety of quan-
tum primitives, such as amplitude amplification, quantum walks,
the quantum Fourier transform, and quantum simulation. Several
of the algorithms also require the implementation of complex clas-
sical oracles. The starting point for each of our algorithm imple-
mentations was a detailed description of the algorithm provided by
IARPA.

Related work. Many formalisms for programming quantum com-
puters have been developed in the last few decades. Some of them,
such as the quantum Turing machine [6] or the quantum lambda
calculus of van Tonder [22], are mainly theoretical tools for ex-
ploring particular aspects of quantum computation, and arenot de-
signed with practical quantum programming in mind.

There are many recent proposals for quantum programming lan-
guages [7]. Of these, we pinpoint three languages that represent im-
portant milestones and can be regarded as predecessors of Quipper.

In the realm of imperative programming languages, arguably
the oldest “concrete” quantum programming language isÖmer’s

http://arxiv.org/abs/1304.3390v1

QCL [16]. Defined as a C-style language, QCL comes with many
interesting features, collectively dubbedstructured quantum pro-
gramming. This provides a relatively natural way of writing simple
quantum algorithms. One of QCL’s innovations was the separa-
tion of functions into separate syntactic classes, based ontheir
operational behavior; thus, QCL distinguishes classical proce-
dures, which are unconstrained; “quantum functions”, which are
restricted to define unitary operations; and “pseudo-classical” op-
erators, which are intended to implement oracles, featuring “quan-
tum tests” and automatic uncomputation of ancillas. QCL lacks
high-level quantum data types, and does not have a well-defined
semantics, complicating the analysis of programs. Finally, since
the language was designed with simulation in mind, many of its
useful programming features incur a strong computational over-
head. In spite of these drawbacks, QCL is a milestone in the de-
velopment of quantum programming languages. We include a very
brief comparison between circuits generated by Quipper andQCL
in Section 6.

More recently, there have been two proposals for functional
quantum programming languages that can be regarded as precur-
sors of Quipper. Selinger and Valiron’s quantum lambda calculus is
an ML-style language with strong static type checking [18, 19]. It is
designed to run on Knill’s QRAM model [12], but lacks high-level
facilities for circuit construction and manipulation. Thequantum
IO Monad of Green and Altenkirch [1] is, like Quipper, embedded
in Haskell, provides extensible quantum data types, and comes with
a consistent operational semantics. However, it uses a muchsimpler
circuit model and lacks many of Quipper’s advanced programming
features.

Outline of the paper. In Section 2, we briefly present quantum
computation, focusing particularly on the interface by which soft-
ware would interact with a quantum device. Section 3 covers some
of the main techniques that are used to describe quantum algo-
rithms and hopefully makes the case for a quantum programming
language. In Section 4, we introduce Quipper. Section 5 discusses
our implementation of the Triangle Finding algorithm, and Sec-
tion 6 contains a very brief comparison between Quipper and QCL.
We summarize our conclusions at the end.

2. Quantum computation
We very briefly summarize some basic notions from quantum com-
putation, primarily to provide hints on how a quantum program-
ming language might interact with a quantum computer. One can-
not really do this subject justice in such a limited space. For a much
more thorough introduction to quantum computing, see e.g. [15].

In quantum computation, the storage and manipulation of data is
governed by the law of quantum physics. We will here be concerned
with idealizedquantum computation, i.e., we ignore the effects
of physical imprecisions, decoherence, etc. We will describe an
idealized quantum device in terms of itsstateandoperations.

The state of a quantum system is given by a normalized vec-
tor in a Hilbert space. The smallest unit of information in quan-
tum computing is thequantum bitor qubit; the state of one qubit
is a complex linear combination of two basis vectors|0〉 and |1〉.
Similarly, the state of two qubits is given as a linear combination
of four basis vectors{|00〉 , |01〉 , |10〉 , |11〉}, and more generally,
the state ofn qubits is a linear combination of2n basis vectors.
The available operations areunitary transformations, which allow
the state to be transformed along a user-specified unitary map; and
measurements, which are the only way to extract classical informa-
tion from a quantum state. We usually assume that each quantum
device has some built-in set of elementary unitary transformations,
calledgates. Measurement has a probabilistic behavior: for exam-
ple, when measuring a qubit in stateα |0〉 + β |1〉, the result will

be0 with probability |α|2 and1 with probability |β|2, and subse-
quently the state of the qubit will have been changed to|0〉 or |1〉,
respectively. There is an analogous rule for measuring, say, one of
several qubits in a multi-qubit state.

2.1 Interacting with a quantum device

We can now describe the operation of an idealized quantum device
known as Knill’s QRAM model for quantum computation [12]. In
this model, we think of a quantum computer as a specialized device
that is attached to and controlled by a classical computer, much in
the way of a co-processor. The device holdsn individually address-
able qubits, for some fixedn. The operation of the quantum device
is controlled by only two kinds of instructions, which can bein-
terleaved. Instructions of the first kind are unitary operations. They
take the form “apply the built-in unitary gateU to qubit k”, “ap-
ply the gateV to qubitsj andk”, and so on. The quantum device
responds with an acknowledgement that the operation has been per-
formed, but there is no further information returned. Instructions of
the second kind are measurements. They take the form “measure
qubitk”. The quantum device responds with a measurement result,
which is either0 or 1. One can also add a third kind of instruction
calledinitialization: “reset qubitk to 0”. However, this is derivable
from the instructions already mentioned: namely, by first measur-
ing qubit k, and then negating it if and only if the measurement
outcome was1.

2.2 Basic properties

In the above model of quantum computation, the control flow of
an algorithm is purely classical: tests, loops, etc., are performed on
the classical computer that controls the quantum co-processor. Both
classical and quantum data are first class objects.

Because quantum measurement is a probabilistic operation,
classical probabilistic computation is automatically included as
a subset of quantum computation.

The laws of quantum mechanics imply that quantum informa-
tion cannot be duplicated. This is the so-calledno-cloningprop-
erty of quantum mechanics. It would not be physically meaning-
ful, for example, to apply a 2-qubit quantum gate to qubitsk and
k. Quantum programming languages should ensure that such non-
physical operations cannot occur. This kind of property caneither
be checked at compile time or at run time.

2.3 Hardware independence

We do not claim that the idealized QRAM model is what an actual
quantum computer will look like. An actual quantum computer
might be far more difficult to control. Because of the relatively short
life span of quantum states in experimental settings, many layers
of quantum error correction and control will likely be required to
enable meaningful quantum computation. Also, realistic quantum
hardware may be highly sensitive to timing constraints, such as
the exact timing of control pulses. So rather than performing one
gate or measurement at a time, as suggested in the QRAM model,
it may be more realistic to assume that a large number of gates
will be pre-computed, then executed in a single batch operation on
the quantum device, possibly measuring all qubits at the end. A
sequence of pre-computed gates is called aquantum circuit, and
this model of quantum computation is known as thecircuit model.

One operation that is available in the QRAM model, but not in
the circuit model, is the ability to change the sequence of quantum
gates in response to the results of previous measurements. This
restriction can be overcome by augmenting the circuit modelwith
the ability to preserve some of the unmeasured qubits in somekind
of long-term storage between successive circuit executions.

From the point of view of programming language design, the
particular choice of physical quantum architecture shouldnot be

of much consequence. The purpose of a high-level programming
language is precisely to abstract from such hardware specific de-
tails, and to present the user with the illusion of a uniform idealized
computational model.

3. Techniques used in quantum algorithms
While every quantum algorithm can be ultimately specified asa
sequence of gates and measurements, this is rarely how quantum
algorithms are actually described in the literature. Rather, they are
often described at a high level, for example in the style of: “Take
the following function, which can obviously be implementedby
a boolean circuit of polynomial size. Translate this to a reversible
quantum circuit in the standard way. Applym steps of amplitude
amplification, then copy the result to a scratch register andun-
compute”. We believe that a good quantum programming language
should be flexible enough to allow quantum algorithms to be ex-
pressed at a level of abstraction, high or low, that is as close as
possible to the intent of the algorithm’s human designer, while fill-
ing in enough details to be unambiguous. For this reason, prior to
introducing Quipper’s high-level programming features inthe next
section, let us briefly review some of the techniques that arecom-
monly used in the design of quantum algorithms.

3.1 Quantum primitives

Most quantum algorithms make use of one or more of a few well-
known primitive building blocks. Thequantum Fourier transform
is a unitary change of basis analogous to the classical Fourier trans-
form, and is used in many quantum algorithms, for example to
find the period of a periodic function.Amplitude amplification(also
known asGrover’s search) is used to increase the amplitude of cer-
tain basis states in a superposition, while decreasing others.Quan-
tum walkscan be described as the quantum counterpart to random
walks. Due to quantum interference, some paths in the walk may
cancel out (or at least, appear with decreased probability). In some
situations, it is possible to outperform the success probability of
a similar strategy that would have used a classical random walk.
Phase estimationis a technique for estimating eigenvalues of a uni-
tary operator.State distillationis a method by which one starts with
a large noisy set of quantum states, and gradually narrows them
down to a smaller cleaner set of states with desirable properties.

The above primitives are often at the heart of what makes a
quantum algorithm potentially outperform its classical counterpart.
But they are more than just off-the-shelf functions that canbe
directly used on a classical data structure, and they are typically
combined in non-trivial ways.

3.2 Oracles

Another important part of many quantum algorithms is the descrip-
tion of anoracle. An oracle is usually given by a classical func-
tion f : Booln → Boolm, describing some aspect of the input
to the algorithm, such as the edges of a graph, the winning posi-
tions of a game, arithmetic or number-theoretic functions,and so
forth. To be useable in a quantum computation, the oracle must be
made reversible. This can be done by lifting the function, such that
f̂ : Booln+m → Booln+m is defined aŝf(x, y) = (x, y⊕ f(x)).
The reversible boolean function̂f can then be lifted into a unitary
map working on quantum bits. Often, in the literature, the descrip-
tion of oracles is both low-level and high-level. It is low-level in
the sense that, despite the fact that the oracle manipulatesnon-
trivial data types (e.g., integers, real numbers, edges of agraph,
etc.), the algorithm goes into detail about how to implementthese
in terms of quantum registers. But it is also high-level, in the sense
that the details of how the oracle performs its operations are often
only sketched.

a1 • •

b1 ◦ ◦
W W

†

a2 • •

b2 ◦ ◦
W W

†

...
.

. ...

a2n • •

b2n ◦ ◦
W W

†

r ◦

|0〉 ⊕ ⊕ ⊕ e
−iZt ⊕ ⊕ ⊕

Figure 1. Example of a quantum circuit. Circuits are read left to
right, with horizontal lines representing wires, boxes representing
quantum gates, and vertical wires representing controls ona gate.

3.3 Circuit families

At a low level, quantum algorithms take the form of a (poten-
tially very long) sequence of unitary gates with occasionalmea-
surements. Such a sequence of operators is called aquantum circuit
and is customarily described in diagrammatic form. An example of
such a diagram, showing a diffusion step from the Binary Welded
Tree algorithm [4], is shown in Figure 1. However, such diagrams
are not in and by themselves good descriptions of quantum algo-
rithms. The reason is that most quantum algorithms also depend
on parameters, such as the numbern in Figure 1, and thus a quan-
tum algorithm really describes afamilyof circuits, which cannot be
captured in a single diagram. Quipper permits a formal and precise
description of such parameterized circuit families.

3.4 Circuit manipulation

Although ultimately, a quantum algorithm comes down to a se-
quence of elementary gates and measurements, many quantum al-
gorithms are more naturally described in terms of manipulations at
the level of entire sub-circuits, rather than individual gates. Exam-
ples of such operations are:
• reversing;
• iteration (e.g., Trotterization; amplitude amplification);
• automatic synthesis of classical circuits (e.g., oracles)and an-

cilla management (i.e., initialization and recollection of auxil-
iary quantum bits);

• circuit transformations (e.g., replacing one elementary gate set
by another);

• whole-circuit optimizations.

3.5 Classical processing

To be useful, a complete quantum program must ultimately pro-
duce a classical answer to a classical question. In particular, any
parameters to the algorithm are classical, as are the final outputs.
Therefore, most quantum algorithms use some amount of classical
pre- and post-processing. Typically, the algorithm consists of the
description of a parameterized quantum circuit, followed by a final
measurement.

In some algorithms, such as the Triangle Finding algorithm,the
probabilistic measurement result can then be classically checked to
see if a useful answer has been found, and if not, the whole proce-
dure is repeated, possibly for a different set of parameters. In some
algorithms, such as the Binary Welded Tree algorithm, the validity
of a potential solution cannot be efficiently verified, and a statis-
tical argument is used to determine how many times the algorithm
should be repeated until the correct answer is found with thedesired
probability. A third class of algorithms, such as the UniqueShort-
est Vector algorithm, requires a more subtle interleaving of quan-

tum and classical operations, whereby only a subset of the qubits
are measured, and the quantum memory cannot be reset between
each quantum circuit invocation. In the paradigm of quantumcir-
cuits, this amounts to saying that the circuit is constructed on-the-
fly, where later pieces depend on the value of former intermediate
measurements. This is typically the case for algorithms that incor-
porate state distillation.

We learn from this that a usable quantum programming lan-
guage should also incorporate a general-purpose classicalprogram-
ming language, in which classical pre-, post-, and intermediate
computations can be specified. It is desirable that the integration
between the classical and quantum parts of the language is asseam-
less as possible, but that a clear distinction still exists.

4. Our proposal: Quipper
We introduce Quipper, an embedded functional programming lan-
guage for quantum computation. Quipper is intended to offera uni-
fied general-purpose programming framework for quantum com-
putation. It provides, among other things, a notation for quantum
circuits, a notation for quantum algorithms, and a notationfor cir-
cuit transformations.

Quipper was designed with correctness, scalability and usability
in mind. It was originally developed in the context of IARPA’s
Quantum Computer Science program [10]. We have demonstrated
Quipper’s viability by implementing seven non-trivial quantum
algorithms from the literature [2, 4, 8, 9, 13, 17, 23], as selected by
IARPA [10]. In this section, we describe some of the basic features
of Quipper’s design.

4.1 Quipper is an embedded language

We implemented Quipper as an embedded language, with Haskell
as the host language. Therefore, Quipper can be seen as a collec-
tion of data types, combinators, and a library of functions within
Haskell, together with anidiom, i.e., a preferred style of writing
embedded programs. See [5, Sec. 1.3] for a general discussion of
the advantages and disadvantages of embedded languages in pro-
gramming language design.

We chose Haskell as the host language because Quipper con-
tains many higher-order and overloaded operators, whose imple-
mentation makes heavy use of advanced features of Haskell’stype
system, including several GHC extensions. Both Haskell andQuip-
per are strongly-typed functional programming languages,and
therefore they are a relatively good fit for each other. Of course,
there are some trade-offs. In particular, Haskell lacks twofeatures
that would be useful for Quipper:linear typesanddependent types.
Therefore, certain properties of quantum programs that could be
checked at compile time by a linear or dependent type system
must currently be checked at run-time. For this reason, a future
implementation of Quipper may be equipped with a stand-alone
compiler, or at least a custom type-checker.

4.2 Quipper’s extended circuit model

The quantum circuit model, as usually presented (see e.g. [15,
Sec. 4]), is only concerned with unitary gates and circuits.While
this is theoretically sufficient, we found it to be a cumbersome
restriction in practice. Quipper natively supports a larger class of
circuits that also includes:
• Explicit qubit initialization and termination. This is useful,

among other things, for accurately representing the scope of
ancillas.

• Measurements, classical bits, classical gates, and classically-
controlled quantum gates.

4.2.1 Ancillas and scope

Many quantum algorithms require ancillas, i.e., “scratch space”
qubits whose state is (say)|0〉 outside of certain well-defined re-
gions where the ancilla is being “used”. In settings where all gates
must be unitary, ancillas are usually treated as additionalglobal in-
puts and outputs to the algorithm, which are assumed to be in state
|0〉 at the start of the algorithm, and which the algorithm is expected
to reset to|0〉 after each “use”. The following image shows a circuit
with two ancillas, and the regions where the ancilla is in state |0〉
are highlighted:

|0
|0

|0
|0

H

H

We refer to the regions where an ancilla may potentially be used
as thescopeof the ancilla. For a compiler of quantum programming
languages, there are many potential benefits to tracking thescope
of ancillas explicitly. For example, it would be wasteful for error
correction to be applied to an ancilla while it is known to be un-
used (and therefore disentangled from the rest of the computation).
Moreover, if an algorithm temporarily requires two ancillas at some
point in time, and then again two ancillas at some later time,it does
not actually matter whether the two later ancillas are “equal” to
the earlier ancillas, whether they are swapped, or whether they are
different ancillas altogether. For example, the followingcircuit is
equivalent to the one above:

|0
|0

|0
|0

H

H

The problem of which particular ancillas to use from a “pool”of
ancillas is analogous to the classical problem of register allocation,
and is best left to a late compiler phase that is aware of the layout
of physical qubits.

In Quipper’s circuit model, we use the notation “0 −” to denote
the allocation of a new qubit initialized to state|0〉. Dually, we
use the notation “− 0” to denote the deallocation of a qubit that
is assertedto be in stated|0〉. Here is the same circuit as above,
represented with explicitly scoped ancillas:

0

0

H

0

0 0

0

H

0

0

Keeping track of ancilla scopes also has an additional possible
advantage. In certain physical machine models, such as photonics,
it is generally better to work with “fresh” photons than withpho-
tons that have been in a holding loop. This is because photonshave
a relatively high dissipation rate. Scoped ancillas were used exten-
sively in our seven algorithm implementations.

4.2.2 Assertive termination

As explained above, the gate− 0 terminates (or deallocates) a qubit
while asserting that it is in state|0〉. We call this anassertive ter-
mination, to distinguish it from the ordinary termination, denoted
−, which simply drops the qubit (therefore resulting in a possibly
mixed state).

The concept of assertive qubit termination warrants some fur-
ther thoughts. The first thing to note is that it is theprogrammer,

and not the compiler, who is asserting that the qubit is in state |0〉
before being terminated. In general, the correctness of such an as-
sertion depends on intricacies of the particular algorithm, and is not
something that the compiler can verify automatically. It istherefore
the programmer’s responsibility to ensure that only correct asser-
tions are made. The compiler is free to rely on these assertions,
for example by applying optimizations that are only correctif the
assertions are valid.

The second thing to note is that circuits containing qubit ini-
tializations and assertive terminations can never result in a mixed
state, and are, in a suitable sense, unitary and reversible.More pre-
cisely, where assertive qubit terminations are used in a circuit, they
determine a certainsubspaceof its domain: namely, the subspace
of those states for which the assertions are true. Dually, the use
of qubit initializations determines a certain subspace of the co-
domain: namely, the subspace of states that are reachable (or equiv-
alently, in theimageof the circuit). The circuit then defines a uni-
tary bijection between these two subspaces. In particular,it follows
that a circuit usingn input qubits andn output qubits, and using
any number of local ancillas, is unitary (provided, of course, that
all termination assertions are correct, i.e., all ancillasare uncom-
puted correctly). For this reason, Quipper will, without complaint,
reverse circuits containing qubit initializations and assertive termi-
nations.

4.2.3 Mixed classical/quantum circuits

In the circuit model used by Quipper, classical and quantum data
can co-exist. Classical wires (whose state is a classical bit), classi-
cal gates, and classically-controlled quantum gates can befreely
combined with pure quantum gates. Measurement is a gate that
turns a qubit into a classical bit. One reason for including these fea-
tures is the construction of oracles, which we will discuss in more
detail in Section 4.6.

4.3 The two run-times

4.3.1 Circuit generation and circuit execution

Because Quipper is (among other things) a circuit description lan-
guage, Quipper programs have three distinct phases of execution:
compile time, circuit generation time, and circuit execution time.
We refer to circuit generation time and circuit execution times
as the “two run-times”. The phenomenon of having three distinct
phases of execution is well-known and also occurs, for example, in
hardware description languages (see e.g. [5]).

1. Compile time. Since Quipper is an embedded language, its
compile time is the same as the Haskell compile time. It takes
place on a classical computer in an off-line development envi-
ronment (i.e., before specific algorithm parameters are known).
The input to this phase is source code andcompile time param-
eters. The output is executable object code.

2. Circuit generation time. This takes place on a classical com-
puter in an on-line environment (i.e., when specific algorithm
parameters are known). The input to this phase is executable
object code andcircuit parameters(for example, the size of
registers, problem sizes, the size of time steps, error thresholds,
etc.). The output is a representation of a quantum circuit.

3. Circuit execution time. This takes place on a physical quantum
computer in an on-line real-time environment. The input to this
phase is a quantum circuit, and possibly somecircuit inputs
(for example, qubits fetched from long-term storage to initialize
circuit inputs, if supported by the physical device; classical bits
to be used as classical circuit inputs). The output consistsof
circuit outputs (for example, classical bits that are measurement
results; qubits to be moved to long-term storage, if supported).

Many quantum algorithms require an alternation between the
second and third phases (circuit generation time and circuit exe-
cution time). In this model of execution, the classical controller
generates a circuit, sends it to the physical device for execution,
awaits measurement results, then generates another circuit, and so
on. We note that this is the same as the usual quantum circuit model
of computation. If, moreover, the physical quantum device has the
ability to preserve qubits in long-term storage between real-time
circuit invocations, then one can support a more general model of
computation known in Quipper asdynamic lifting: this allows cir-
cuit outputs (for example, the results of measurements) to be re-
used as circuit parameters (to control the generation of thenext
part of the circuit). An example of such a model of computation
is Knill’s QRAM model [12]. We believe that Quipper’s abstract
computational paradigm is general enough to support a variety of
such concrete computational models.

4.3.2 The parameter/input distinction

We use the word “parameter” to refer to a value that is known at
circuit generation time, and we use the word “input” or “state” to
refer to a value that is only known at circuit execution time,i.e.,
the state of a bit or qubit on the physical quantum device, thought
of as a “wire” in a circuit. The distinction between inputs and pa-
rameters must be taken seriously and requires special programming
language support. For example, because inputs are not knownat
circuit generation time, if one would like to do an if-then-else op-
eration conditioned on a booleaninput, then one must generate the
circuit for the then-partand the else-part. On the other hand, if the
if-then-else operation is conditioned on a booleanparameter, then
one only needs to generate the circuit for the then-partor the else-
part, resulting in a smaller circuit.

Because of this distinction between generation-time parameters
and execution-time inputs, the Quipper language has three basic
types for bits and qubits, instead of the usual two:
• Bool: a boolean parameter, known at circuit generation time;
• Bit: a boolean input, i.e., a boolean wire in a circuit;
• Qubit: a qubit input, i.e., a quantum wire in a circuit.

A Bool is a parameter and can be easily converted to aBit.
The outcomes of quantum measurements are only known at circuit
execution time, and are therefore Bits, not Bools. As mentioned
above, the converse operation, converting aBit to a Bool, is
known asdynamic liftingin Quipper, and is usually an expensive
operation, requiring circuit execution to be suspended while the
next part of the circuit is generated.

The input/parameter distinction also applies to classicaldata
types other than booleans; for example, there are integer parameters
and integer inputs.

Moreover, some data is partly input and partly parameter. For
example, if a quantum function inputs a list of qubits, then the
length of the list is a parameter (affecting, for example, circuit
size), whereas the actual qubits in the list are inputs. In Quipper
terminology, when a piece of data has both input and parameter
components, the parameter component is called theshapeof the
data.

4.4 Circuit description language

One can readily imagine a quantum programming language that
operates by sending gate-by-gate instructions in real timeto some
physical quantum device. Indeed, this was the approach taken in
[18, 19]. However, we found that this approach is not very practical
when it comes to implementing larger-scale quantum algorithms.
Quantum algorithms in the literature are often representedat a rela-
tively high conceptual level, and many tasks in algorithm construc-
tion require manipulations at the level of entire circuits,rather than

individual gates. Examples of such operations include inversion;
iteration; ancilla management; circuit transformations (e.g., replac-
ing one set of basic gates by another); and whole-circuit optimiza-
tion. Another important use of whole-circuit manipulationis the
automatic generation of reversible circuits from classical code. In
our experience, it is perhaps fair to say that 99 percent of the quan-
tum programmer’s task is constructing and manipulating circuits,
and only 1 percent is actually running them.

We therefore designed Quipper with the goal of supporting
both gate-level operations and circuit-level operations in a natural
way. Quipper combines a basic procedural paradigm for writing
quantum functions “one gate at a time” with a powerful higher-
order paradigm for whole-circuit manipulations.

4.4.1 Procedural paradigm

The basic philosophy of Quipper’s procedural paradigm is that
qubits are held in variables and gates are applied to them one
at a time. Subroutines can be used to group gate-level operations
together where the programmer finds it useful. When writing such
procedural code, the programmer may safely pretend — although
this is not actually true — that the variables hold actual physical
qubits, and that the specified gates are applied to them in real time.

Thus, the basic abstraction offered by Quipper is that a quantum
operation is afunction that inputs some quantum data, performs
state changes on it, and then outputs the changed quantum data.
This is encapsulated in a Haskell monad calledCirc. For example,
the following is a simple quantum function that inputs a pairof
quantum bits, performs some unitary operations (two Hadamard
gates and a controlled not-gate), and outputs the modified pair of
quantum bits. The code is shown on the left, and the generated
circuit is shown on the right.
mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do

a <- hadamard a
b <- hadamard b
(a,b) <- controlled_not a b
return (a,b)

H

H

Gates can also be written in “imperative style”, i.e., the return
value of a gate can be ignored if it consists of the same physical
qubits as the gate’s input. For now, this is just a notationalcon-
vention, but it could be formalized through the use of alinear type
systemin a future version of Quipper.

4.4.2 Block structure

Quipper provides operators for introducing block structure into
circuits. For example, the operator

with_controls :: Qubit -> Circ a -> Circ a

can be used to let an entire block of gates be controlled by a
qubit. The example also illustrates how subroutines (in this case,
mycirc defined above) can be used to build up complex circuits
from simpler ones.
mycirc2 :: Qubit -> Qubit -> Qubit

-> Circ (Qubit, Qubit, Qubit)
mycirc2 a b c = do

mycirc a b
with_controls c $ do
mycirc a b
mycirc b a

mycirc a c
return (a,b,c)

H

H

H

H H

H H

H

Another block structure operator provided by Quipper is

with_ancilla :: (Qubit -> Circ a) -> Circ a.

This operator can be used to provide an ancilla qubit (tem-
porary scratch space) to a block of gates. The ancilla is initially

in state|0〉, and the code is expected to return it to state|0〉 at
the end of the block. The following example also illustratesthe
use of thecontrolled operator, which is an infix version of
with controls. The controls are specified to the right of the op-
erator, and can be a tuple of qubits.
mycirc3 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)

mycirc3 a b c = do
with_ancilla $ \x -> do

qnot x ‘controlled‘ (a,b)
hadamard c ‘controlled‘ x
qnot x ‘controlled‘ (a,b)

return (a,b,c)
0

H

0

4.4.3 Circuit operators

In addition to the gate-by-gate circuit construction paradigm, Quip-
per also provides powerful higher-order operators that operate on
entire quantum functions. The block-structuring commandsof the
previous subsection are examples of simple higher-order operators.
Other high-level operators provided by Quipper include operators
for reversing, iterating, and transforming quantum procedures, as
well as a general mechanism for turning classical boolean proce-
dures into quantum oracles.

The reverse simple operator takes a quantum function and
returns its inverse:
timestep :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)

timestep a b c = do
mycirc a b
qnot c ‘controlled‘ (a,b)
reverse_simple mycirc (a,b)
return (a,b,c)

H

H H

H

It is important to realize that reversing a circuit is not necessarily
an operation to be performed just on the output of a program (say,
by a separate tool). Many quantum algorithms require a circuit to
be reversed in the middle of a computation, perhaps within a nested
subroutine.

The operatordecompose generic decomposes a quantum cir-
cuit into a specified set of elementary gates. The inputs and out-
puts of the circuit are unchanged, so the resulting quantum cir-
cuit has the same type as the original circuit. The decomposition is
achieved by first decomposing multiply-controlled gates into Tof-
foli gates, and then decomposing the Toffoli gates into binary gates
[15, Sec. 4.3]. For example, the following decomposes the circuit
from the previous example into binary gates:
timestep2 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)

timestep2 = decompose_generic Binary timestep

H

H

V V* V

H

H

4.4.4 Boxed subcircuits

Quipper circuits can be very large; for example, in Section 5,
we use Quipper to describe a circuit of over 30 trillion gates.
In order to be able to store and manipulate such large circuits
efficiently, Quipper provides a feature calledhierarchical circuits
or boxed subcircuits. The idea is simple: if a certain subcircuit is
used multiple times throughout a larger circuit, the programmer has
the option to “box” it. In this case, the subcircuit will be replaced by
a single named gate, with a separate definition on the side. Boxed
subcircuits can be nested, leading to a hierarchy of circuits. The
Quipper operator for introducing a boxed subcircuit is calledbox.

It takes a name and a circuit-generating function as its arguments.
See Section 5 for examples.

4.4.5 Run functions

As we have already seen, in Quipper, thedescriptionof circuits is
separated fromwhat to dowith them. Thus, the same subroutine
can be used, for example, to run a circuit on a quantum device,
or to construct and manipulate it in memory. We believe that this
separation provides a useful abstraction to programmers.

What to do with a circuit is determined by differentrun func-
tions for theCirc monad. For example, the functionprint gen-
eric can be used to print a circuit in a number of available output
formats (such as text, PostScript, and PDF). Quipper also provides
a functionrun generic to simulate a circuit (this is necessarily
inefficient on a classical computer). The more specialized func-
tionsrun classical generic andrun clifford generic can
be used to simulate certain classes of circuits efficiently;this is es-
pecially useful in testing oracles.

4.5 Quipper’s extensible quantum data types

Following the strategy first presented in Altenkirch and Green’s
work on the Quantum IO monad [1], Quipper uses Haskell’s type
classes to provide an abstract view of the notion of quantum data.
A type class can be thought of as a property that a type may satisfy;
the property comes with a set of functions. The strength of type
classes is that they can be defined by induction on the structure of
types.

In Quipper, the notion of quantum data is represented by the
type classQCData. The most basic members of this type class are
Qubit andBit, representing a quantum bit and a classical bit in a
circuit, respectively. Expanding on this, tuples of quantum data are
quantum data, lists of quantum data are quantum data, and so forth:
instance (QCData a, QCData b) => QCData (a,b) where ...
instance (QCData a) => QCData [a] where ...

Quipper also comes with a number of libraries defining addi-
tional kinds of quantum data. For example, there is an arithmetic
library that definesQDInt, a type of fixed-size signed quantum in-
tegers, and a real number library defining a typeFPReal of fixed-
size, fixed-point real numbers.

Certain generic quantum operations can be defined at any
QCData instance, rather than just qubits. For example, the built-in
Quipper functioncontrolled not, which applies a controlled not
operation to each corresponding pair of qubits from two quantum
data structures, has type:

controlled_not :: (QCData q) => q -> q -> Circ (q, q).

Quipper also provides a type classQShape, which takes 3 argu-
ments and represents the relationship between the quantum input,
classical input, and classical parameter versions of a type, as de-
scribed in Section 4.3.2. For example, we have
instance QShape Bool Qubit Bit
instance (QShape b q c, QShape b’ q’ c’)

=> QShape (b,b’) (q,q’) (c,c’)
instance QShape IntM QDInt CInt

Most of Quipper’s built-in circuit generating functions natively
use these representations. For example, the functions for initializa-
tion and measurement of quantum data have the type
qinit :: QShape b q c => b -> Circ q
measure :: QShape b q c => q -> Circ c

For example, we can useqinit to create a pair of quantum bits:
example = do

(p,q) <- qinit (False,False)
...

4.6 Oracles in Quipper

Although appending gates to quantum circuits is an important
part of many quantum algorithms, the most challenging part for
the quantum programmer — and the biggest, in terms of num-
ber of gates produced — is often the implementation of classi-
cal oracles. Such oracles are boolean functions represented as re-
versible quantum circuits. They are problem specific and canbe
quite complicated. For example, Shor’s factoring algorithm [21]
relies on an oracle for computing the modular exponentiation
f(x) = ax (modN), whereN is the integer to be factored. In
the Triangle Finding algorithm, described in more detail inSec-
tion 5 below, an oracle is used to define the edges of the graph that
is the input to the algorithm.

Quipper provides powerful facilities for programming oracles
in a natural way.

4.6.1 Automatic generation of quantum oracles

The implementation of a quantum oracle “by hand” usually re-
quires four separate steps. The first step is to express the oracle as
a classical program acting on classical data types. The second step
is to translate this program to a classical circuit for the given input
size. The third step is to change the classical circuit to a quantum
circuit, possibly introducing many ancillas to hold intermediate or
“scratch space” values. The fourth step is to make this quantum
circuit reversible, using the standard trick of replacing the function
x 7→ f(x) by a reversible function(x, y) 7→ (x, y ⊕ f(x)), while
also uncomputing any scratch space used by the functionf .

In Quipper, all of these steps but the first one can be automated.
Consider, for example, a very simple oracle that inputs a list of
booleans and outputs their parity (even or odd). This can be natu-
rally expressed as a functional program:
build_circuit
f :: [Bool] -> Bool
f as = case as of
[] -> False
[h] -> h
h:t -> h ‘bool_xor‘ f t

The keywordbuild circuit is built into Quipper (inciden-
tally, it has been implemented in a very interesting way, using a
custom pre-processor and Template Haskell [20]). Its purpose is to
perform an operation that we callcircuit lifting, automating steps
2 and 3 above. Specifically, the effect of thebuild circuit key-
word is to produce, at compile time, a circuit-generating function
template f in addition to the functionf. The type of the func-
tion template f is obscure, but can be made useful by passing it
through Quipper’sunpack operation:

unpack template_f :: [Qubit] -> Circ Qubit

The function template f automatically produces a circuit
computing the same operation asf. For example, when applied
to a list of 4 qubits, it produces:

0

0

0

Note how the top four qubits are the inputs, the bottom qubit is
the output, and the remaining two qubits are scratch space. Fi-
nally, the fourth step, to make the circuit reversible and uncom-
pute the scratch space, is taken care of by the Quipper operator
classical to reversible:
classical_to_reversible :: (Datable a, QCData b) =>

(a -> Circ b) -> (a,b) -> Circ (a,b)

For example, here is the circuit produced by

classical_to_reversible (unpack template_f):

0

0

0 0

0

0

Note that in this circuit, the top four qubits are inputs, thefifth qubit
is the output, and all intermediate ancillas have been uncomputed.

Quipper’s circuit lifting operation is extremely versatile. We
have used it to implement oracles containing millions of gates. For
example, our implementation of the Boolean Formula algorithm
uses an oracle that determines the winner for a given final position
in the game of Hex. It uses a flood-fill algorithm, which we imple-
mented as a functional program and converted to a circuit using the
circuit lifting operation. The resulting oracle consists of 2.8 million
gates. Similarly, our implementation of the Linear Systemsalgo-
rithm makes liberal use of arithmetic and analytic functions, such
as sin(x) andcos(x), which were implemented using the circuit
lifting feature. The circuit created forsin(x), over a 32+32 qubit
fixed-point argument, uses 3273010 gates.

5. The Triangle Finding algorithm in Quipper
We give some details of our implementation of the Triangle Finding
algorithm in Quipper.

5.1 Background

An instance of theTriangle Finding problem[3, 14] is given by an
undirected simple graphG containing exactly one triangle∆. The
graph is given by an oracle functionf , such that, for any two nodes
v, w of G, f(v, w) = 1 if (v,w) is an edge ofG andf(v, w) = 0
otherwise. To solve an instance of the Triangle Finding problem is
to find the set of vertices{e1, e2, e3} forming∆ by queryingf .

The Triangle Finding algorithm, as described in [14] and [3],
works by performing a Grover-based quantum walk on a larger
graphH , called theHamming graphassociated toG. It is designed
to find∆ with high probability. The algorithm is parametric on an
oracle defining the graphG. In our implementation, the oracle is a
changeable part, but we have implemented a particular pre-defined
oracle specified by the QCS program. This oracle injectsG into
the space{0, 1, . . . , 2l − 1} of l-bit integers, and each oracle call
requires the extensive use of modular arithmetic.

The overall algorithm is parameterized on integersl, n and r
specifying respectively the lengthl of the integers used by the
oracle, the number2n of nodes ofG and the size2r of Hamming
graph tuples.

5.2 Top-level structure

The Quipper implementation of the Triangle Finding algorithm is
broken down into six modules:
• Definitions: global definitions used throughout the algo-

rithm.
• QWTFP: the quantum walk algorithm and its subroutines.
• Oracle: the oracle and its subroutines.
• Main: a command line interface.
• Simulate: a test suite for the oracle.
• Alternatives: alternatives and/or generalization of certain

algorithms.
These can be compiled into an executable programtf. Its com-
mand line interface allows the user, for example, to plug in different
oracles, show different parts of the circuit, select a gate base, select
different output formats, and select parameter values forl, n and

Subroutine o4:

E
N

T
E

R
: o

4_
P

O
W

17 x[3]

x[2]

x[1]

x[0]

0

0

0

0

o8 1

o8 2

o8 3

o8 4

o8 5

o8 6

o8 7

o8 8

o8 9

o8 10

o8 11

o8 12

0

0

0

0 0

0

0

0

o8 1

o8 2

o8 3

o8 4

o8 5

o8 6

o8 7

o8 8

o8 9

o8 10

o8 11

o8 12

0

0

0

0 0

0

0

0

o8 1

o8 2

o8 3

o8 4

o8 5

o8 6

o8 7

o8 8

o8 9

o8 10

o8 11

o8 12

0

0

0

0 0

0

0

0

o8 1

o8 2

o8 3

o8 4

o8 5

o8 6

o8 7

o8 8

o8 9

o8 10

o8 11

o8 12

0

0

0

0

o8 1

o8 2

o8 3

o8 4

o8 5

o8 6

o8 7

o8 8

o8 9

o8 10

o8 11

o8 12

0

0

0

0

o8 1*

o8 2*

o8 3*

o8 4*

o8 5*

o8 6*

o8 7*

o8 8*

o8 9*

o8 10*

o8 11*

o8 12*

0

0

0

0

0

0

0

0

o8 1*

o8 2*

o8 3*

o8 4*

o8 5*

o8 6*

o8 7*

o8 8*

o8 9*

o8 10*

o8 11*

o8 12*

0

0

0

0

0

0

0

0

o8 1*

o8 2*

o8 3*

o8 4*

o8 5*

o8 6*

o8 7*

o8 8*

o8 9*

o8 10*

o8 11*

o8 12*

0

0

0

0

0

0

0

0

o8 1*

o8 2*

o8 3*

o8 4*

o8 5*

o8 6*

o8 7*

o8 8*

o8 9*

o8 10*

o8 11*

o8 12*

0

0

0

0

E
X

IT
: o

4_
P

O
W

17 x[3]

x[2]

x[1]

x[0]

x17[3]

x17[2]

x17[1]

x17[0]

1

2

3

4

1

2

3

4

5

6

7

8

Figure 2. The circuit foro4 POW17

r. Some usage examples are provided throughout the remainderof
this section as we discuss our implementation.

5.3 Code samples

The quantum walk part of the algorithm is broken into about 20
subroutines, and the oracle consists of 8 subroutines. For brevity,
we only present the code for one of each:o4_POW17 anda6_QWSH.
Although relatively simple, these subroutines are good illustrations
of some of Quipper’s key features.

5.3.1 The subroutineo4 POW17

The subroutineo4_POW17 is an arithmetic function used by the
oracle. It computes the seventeenth power of a quantum integer
and stores the result in a fresh integer register. It proceeds by
first raising its inputx to the 16th power by repeated use of a
squaring subroutine, and then multipliesx and x16 to get the
desired result. In the following Quipper code,QIntTF denotes the
type of quantum integers used by the oracle, which happen to be
l-bit integers with arithmetic taken modulo2l − 1 (not2l):
o4_POW17 :: QIntTF -> Circ (QIntTF,QIntTF)
o4_POW17 = box "o4" $ \x -> do
comment_with_label "ENTER: o4_POW17" x "x"

(x, x17) <- with_computed_fun x
(\x -> do
(x,x2) <- square x
(x2,x4) <- square x2
(x4,x8) <- square x4
(x8,x16) <- square x8
return (x,x2,x4,x8,x16))

(\(x,x2,x4,x8,x16) -> do
(x,x16,x17) <- o8_MUL x x16
return ((x,x2,x4,x8,x16),x17))

comment_with_label "EXIT: o4_POW17" (x,x17) ("x","x17")
return (x, x17)

We note the use of the pre-defined Quipper operatorsbox, com-
ment with label and with_computed_fun. The operatorbox
introduces a boxed subcircuit. The operatorcomment_with_label
inserts a comment and some qubit labels in the generated circuits.
Such comments have proven to be quite useful in reading largecir-
cuits. The operatorwith_computed_fun automates the reversing
of intermediary computations: the first block of code (in this case,
applications ofsquare producingx2, x4, x8 andx16) is reversed
once the second block of code (hereo8_MUL) has been applied.
Because the uncomputation of intermediate results is such acom-
mon operation in quantum computing, the use of operators like
with_computed_fun helps to avoid unnecessary and error-prone
code repetitions. All three of these Quipper features can beseen in
the circuit foro4_POW17 with parameter valuesl = 4, n = 3 and
r = 2 shown in Figure 2. This circuit is produced by the command
line ./tf -s pow17 -l 4 -n 3 -r 2.

We note that some of the circuits shown here have too many
gates to be legible in a printed version of this paper; however, in
the PDF version, it is possible to zoom in to see individual gates.

Subroutine o8:

0

0

0

0

0

0

0

0

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d

ctrl

y[3]

y[2]

y[1]

y[0]

x[3]

x[2]

x[1]

x[0]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d

y[3]

y[2]

y[1]

y[0]

x[3]

x[2]

x[1]

x[0]

s[0]

s[1]

s[2]

s[3]

EN
TE

R:
 d

ou
ble

_T
F

x[3]

x[2]

x[1]

x[0]

EX
IT

: d
ou

ble
_T

F

x[0]

x[3]

x[2]

x[1]

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d

ctrl

y[0]

y[3]

y[2]

y[1]

x[0]

x[1]

x[2]

x[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d

y[0]

y[3]

y[2]

y[1]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

EN
TE

R:
 d

ou
ble

_T
F

x[0]

x[3]

x[2]

x[1]

EX
IT

: d
ou

ble
_T

F

x[1]

x[0]

x[3]

x[2]

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d

ctrl

y[1]

y[0]

y[3]

y[2]

x[0]

x[1]

x[2]

x[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d

y[1]

y[0]

y[3]

y[2]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

EN
TE

R:
 d

ou
ble

_T
F

x[1]

x[0]

x[3]

x[2]

EX
IT

: d
ou

ble
_T

F

x[2]

x[1]

x[0]

x[3]

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d

ctrl

y[2]

y[1]

y[0]

y[3]

x[0]

x[1]

x[2]

x[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d

y[2]

y[1]

y[0]

y[3]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

EN
TE

R:
 d

ou
ble

_T
F

x[2]

x[1]

x[0]

x[3]

EX
IT

: d
ou

ble
_T

F

x[3]

x[2]

x[1]

x[0]

0

0

0

0

EX
IT

: d
ou

ble
_T

F*

x[3]

x[2]

x[1]

x[0]

EN
TE

R:
 d

ou
ble

_T
F*

x[2]

x[1]

x[0]

x[3]

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d*

y[2]

y[1]

y[0]

y[3]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d* ctrl

y[2]

y[1]

y[0]

y[3]

x[0]

x[1]

x[2]

x[3]

EX
IT

: d
ou

ble
_T

F*

x[2]

x[1]

x[0]

x[3]

EN
TE

R:
 d

ou
ble

_T
F*

x[1]

x[0]

x[3]

x[2]

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d*

y[1]

y[0]

y[3]

y[2]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d*

ctrl

y[1]

y[0]

y[3]

y[2]

x[0]

x[1]

x[2]

x[3]

EX
IT

: d
ou

ble
_T

F*

x[1]

x[0]

x[3]

x[2]

EN
TE

R:
 d

ou
ble

_T
F*

x[0]

x[3]

x[2]

x[1]

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d*

y[0]

y[3]

y[2]

y[1]

x[0]

x[1]

x[2]

x[3]

s[0]

s[1]

s[2]

s[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d*

ctrl

y[0]

y[3]

y[2]

y[1]

x[0]

x[1]

x[2]

x[3]

EX
IT

: d
ou

ble
_T

F*

x[0]

x[3]

x[2]

x[1]

EN
TE

R:
 d

ou
ble

_T
F*

x[3]

x[2]

x[1]

x[0]

EX
IT

: o
7_

AD
D_

co
nt

ro
lle

d*

y[3]

y[2]

y[1]

y[0]

x[3]

x[2]

x[1]

x[0]

s[0]

s[1]

s[2]

s[3]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EN
TE

R:
 o

7_
AD

D_
co

nt
ro

lle
d*

ctrl

y[3]

y[2]

y[1]

y[0]

x[3]

x[2]

x[1]

x[0]
0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3. The circuit foro8 MUL

In the circuit in Figure 2, the vertical strings of squares marked
o8 represent invocations of a boxed subcircuit. Each of them de-
notes an invocation of the subroutineo8_MUL for multiplication, or
its inverse. The full definition ofo8_MUL is shown in Figure 3.

It is possible to inline the boxed subcircuits withino4_POW17,
but the resulting circuit would be too large to be usefully included
here. However, we can use Quipper’s gate counting feature topro-
vide some statistics about this circuit. The is done via the command
line option-f gatecount. It will compute a gate count for each
boxed subcircuit called byo4_POW17, together with an aggregated
gate count for the circuit with all boxed subcircuits inlined. For
l = 4, n = 3, r = 2, the aggregated gate count foro4_POW17 is:

Aggregated gate count:
1636: "Init0"
3484: "Not", controls 1
288: "Not" controls 1+1

2592: "Not", controls 2
1632: "Term0"
Total gates: 9632
Inputs: 4
Outputs: 8
Qubits in circuit: 71

In words, this circuit has 4 inputs, 8 outputs, and uses a total of
71 qubits (including ancillas) and 9632 elementary gates. Of these
gates, about one third are qubit initializations and terminations, and
the remainder are controlled-not gates with 1 or 2 controls.In gate
counts provided by Quipper a distinction is made between positive
and negative controls. If a gateG hasa positive controls (“filled
dots”) andb negative controls (“empty dots”), the gate count will
read:"G", controls a+b. Moreover,a+0 is writtena.

5.3.2 The subroutinea6 QWSH

The subroutinea6_QWSH implements a walk step on the Hamming
graph. By definition, the nodes of the Hamming graph associated to
G are tuples of nodes ofG, such that two such tuples are adjacent
if they differ in exactly one coordinate.a6_QWSH proceeds in two
steps. In the first step, it arbitrarily chooses an indexi and a node
v of G. In the second step, it replaces a Hamming tupleT by an
adjacent oneT ′ by swapping thei-th component ofT with v, and
updates the register containing the edge information concerning
nodes inT ′. The corresponding Quipper code is the following:
a6_QWSH :: QWTFP_spec -> (IntMap QNode) -> QDInt
-> QNode -> (IntMap (IntMap Qubit))
-> Circ (IntMap QNode, QDInt, QNode,

IntMap (IntMap Qubit))
a6_QWSH oracle@(n,r,edgeOracle,qram) =

box "a6" $ \tt i v ee -> do
comment_with_label "ENTER: a6_QWSH"
(tt, i, v, ee) ("tt", "i", "v", "ee")

with_ancilla_init (replicate n False) $ \ttd -> do
with_ancilla_init (intMap_replicate (2^r) False) $
\eed -> do
(i,v) <- a7_DIFFUSE (i,v)
((tt,i,v,ee,ttd,eed),_) <-

with_computed_fun (tt,i,v,ee,ttd,eed)
(\(tt,i,v,ee,ttd,eed) -> do

(i,tt,ttd) <- qram_fetch qram i tt ttd
(i,ee,eed) <- a12_FetchStoreE i ee eed
(tt,ttd,eed) <- a13_UPDATE oracle tt ttd eed
(i,tt,ttd) <- qram_store qram i tt ttd
return (tt,i,v,ee,ttd,eed))

(\(tt,i,v,ee,ttd,eed) -> do
(ttd,v) <- a14_SWAP ttd v
return ((tt,i,v,ee,ttd,eed),()))

comment_with_label "EXIT: a6_QWSH"
(tt, i, v, ee) ("tt", "i", "v", "ee")

return (tt,i,v,ee)

Here, the Quipper operatorwith_ancilla_init creates a list
of n ancillas, whose scope is restricted to a local block of code.The
circuit for a6_QWSH with parameter valuesl = 4, n = 3 andr = 2
is:

Subroutine a6:

E
N

T
E

R
: a

6_
Q

W
S

H

tt[0,0]

tt[0,1]

tt[0,2]

tt[1,0]

tt[1,1]

tt[1,2]

tt[2,0]

tt[2,1]

tt[2,2]

tt[3,0]

tt[3,1]

tt[3,2]

i[1]

i[0]

v[0]

v[1]

v[2]

ee[1,0]

ee[2,0]

ee[2,1]

ee[3,0]

ee[3,1]

ee[3,2]

0

0

0

0

0

0

0

a7 1

a7 2

a7 3

a7 4

a7 5

a8 1

a8 2

a8 3

a8 4

a8 5

a8 6

a8 7

a8 8

a8 9

a8 10

a8 11

a8 12

a8 13

a8 14

a8 15

a8 16

a8 17

a12 1

a12 2

a12 3

a12 4

a12 5

a12 6

a12 7

a12 8

a12 9

a12 10

a12 11

a12 12

a13 1

a13 2

a13 3

a13 4

a13 5

a13 6

a13 7

a13 8

a13 9

a13 10

a13 11

a13 12

a13 13

a13 14

a13 15

a13 16

a13 17

a13 18

a13 19

a9 1

a9 2

a9 3

a9 4

a9 5

a9 6

a9 7

a9 8

a9 9

a9 10

a9 11

a9 12

a9 13

a9 14

a9 15

a9 16

a9 17

E
N

T
E

R
: a

14
_S

W
A

P

r[0]

r[1]

r[2]

q[0]

q[1]

q[2]

E
X

IT
: a

14
_S

W
A

P

r[0]

r[1]

r[2]

q[0]

q[1]

q[2]

a9 1*

a9 2*

a9 3*

a9 4*

a9 5*

a9 6*

a9 7*

a9 8*

a9 9*

a9 10*

a9 11*

a9 12*

a9 13*

a9 14*

a9 15*

a9 16*

a9 17*

a13 1*

a13 2*

a13 3*

a13 4*

a13 5*

a13 6*

a13 7*

a13 8*

a13 9*

a13 10*

a13 11*

a13 12*

a13 13*

a13 14*

a13 15*

a13 16*

a13 17*

a13 18*

a13 19*

a12 1*

a12 2*

a12 3*

a12 4*

a12 5*

a12 6*

a12 7*

a12 8*

a12 9*

a12 10*

a12 11*

a12 12*

a8 1*

a8 2*

a8 3*

a8 4*

a8 5*

a8 6*

a8 7*

a8 8*

a8 9*

a8 10*

a8 11*

a8 12*

a8 13*

a8 14*

a8 15*

a8 16*

a8 17*

E
X

IT
: a

6_
Q

W
S

H tt[0,0]

tt[0,1]

tt[0,2]

tt[1,0]

tt[1,1]

tt[1,2]

tt[2,0]

tt[2,1]

tt[2,2]

tt[3,0]

tt[3,1]

tt[3,2]

i[1]

i[0]

v[0]

v[1]

v[2]

ee[1,0]

ee[2,0]

ee[2,1]

ee[3,0]

ee[3,1]

ee[3,2]

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In this circuit, the first boxed subcircuit corresponds to the dif-
fusion of the indexi and nodev. The remaining boxed subcircuits
denote the qRam operations before and after the node swap.

5.4 Aggregate gate counts

The command line

./tf -f gatecount -O -o orthodox -l 31 -n 15 -r 9

computes the gate count for just the oracle, with parameter values
n = 15, l = 31 andr = 9. It counts 2051926 total gates and 1462
qubits. The command line

./tf -f gatecount -o orthodox -l 31 -n 15 -r 6

produces the gate counts for the complete algorithm, including
repeated quantum walk steps with inlined oracle invocations. On
a standard laptop, this runs to completion in under two minutes and
produces a count of 30189977982990 (over 30 trillion) totalgates
and 4676 qubits.

6. Comparing Quipper and QCL
To enable a direct comparison between Quipper and QCL, we im-
plemented identical versions of the Binary Welded Tree algorithm
[4] in both programming languages, using a hand-coded oracle. For
further comparison, we also gave a second implementation ofan
equivalent oracle, using Quipper’sbuild circuit mechanism to
automatically generate the (non-optimized) oracle from classical
functional code as explained in Section 3.2. We generated the main
circuit for the BWT algorithm for each of the three differentimple-
mentations, using the same parameters in each case. The results are
summarized in the following table.

QCL “direct” Quipper “orthodox” Quipper “template”
Init 58 313 777
Not 746 8 0
CNot1 9012 472 344
CNot2 7548 768 1760
e
−itZ 4 4 4

W 48 48 48
Term 0 307 771
Meas 0 6 6
Total 17358 1300 2156
Qubits 58 26 108

Here “Init”, “Term”, and “Meas” refer to Quipper’s qubit initial-
ization, termination, and measurement gates. These are notdirectly
comparable between QCL and Quipper, because Quipper explicitly
tracks the scope of ancillas whereas QCL does not. “Total” refers
to the total number of logical gates excluding initialization, termi-
nation, and measurement. “Qubits” refers to the total number of
qubits used in each circuit, i.e., the height of the circuit.

It is apparent that the QCL code produces far more gates than its
Quipper counterpart, even when the hand-coded oracle in QCLis
compared to the automatically generated oracle in Quipper.More-
over, the QCL circuit uses twice as many qubits as the Quipperver-
sion with the same oracle. On the other hand, the Quipper imple-
mentation with automatically generated oracle uses more ancillas
than QCL, but does so with fewer gates.

7. Conclusion
We have presented Quipper, a scalable functional quantum pro-
gramming language. We demonstrated its usability by implement-
ing seven non-trivial quantum algorithms, chosen to represent a
broad range of quantum computing capabilities. The algorithms
were implemented by a team of 11 geographically distributedQuip-
per programmers. Programming the seven algorithms required ap-
proximately 55 man months and resulted in a representation usable
for resource estimation using realistic problem sizes. On this basis
we conclude that Quipper is both usable and useful.

One of the issues left for future work in Quipper is the improve-
ment of compile-time type checking. Thanks to its Haskell imple-
mentation, Quipper already catches many ordinary type errors at
compile time. However, in the absence of a linear type system, cer-
tain properties, such as non-duplication of quantum data, must be
checked at runtime. Developing a fully-featured type system is the
next step in Quipper’s development, and is a work in progress.

8. Acknowledgements
Thanks to Jonathan M. Smith for his helpful comments.

Supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Department of Interior National Business Center
contract number D11PC20168. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA,
DoI/NBC, or the U.S. Government. Supported by NSERC.

References
[1] T. Altenkirch and A. S. Green. The Quantum IO Monad. In S. Gay

and I. Mackie, editors,Semantic Techniques in Quantum Computation,
pages 173–205. Cambridge University Press, 2009.

[2] A. Ambainis, A. M. Childs, B. Reichardt, R.̌Spalek, and S. Zhang.

Any AND-OR formula of sizen can be evaluated in timen
1

2
+o(1) on

a quantum computer.SIAM J. Comput., 39:2513–2530, 2010.

[3] A. Childs and R. Kothari. Quantum query complexity of minor-
closed graph properties. InProceedings of the 28th Symposium on
Theoretical Aspects of Computer Science, pages 661–672, 2011.

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A.
Spielman. Exponential algorithmic speedup by a quantum walk. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, pages 59–68, 2003.

[5] K. Claessen. Embedded Languages for Describing and Verifying
Hardware. PhD thesis, Chalmers University of Technology and
Göteborg University, 2001.

[6] D. Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer.Proceedings of the Royal Society of
London, Series A, 400(1818):97–117, 1985.

[7] S. J. Gay. Quantum programming languages: Survey and bibliography.
Mathematical Structures in Computer Science, 16(04):581–600, 2006.

[8] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation
and the principal ideal problem.J. ACM, 54(1):4:1–4:19, Mar. 2007.

[9] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for
linear systems of equations.Phys. Rev. Lett., 103(15):150502, 2009.

[10] IARPA Quantum Computer Science Program. Broad
Agency Announcement IARPA-BAA-10-02. Available from
https://www.fbo.gov/notices/637e87ac1274d030ce2ab69339ccf93c,
April 2010.

[11] S. Jordan. http://math.nist.gov/quantum/zoo/. Electronic
resource.

[12] E. H. Knill. Conventions for quantum pseudocode. LANL report
LAUR-96-2724, 1996.

[13] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the
triangle problem. quant-ph/0310134, 2003.

[14] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for
the triangle problem. InProceedings of the 16th annual ACM-SIAM
symposium on Discrete algorithms, pages 1109–1117, 2005.

[15] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[16] B. Ömer. Quantum programming in QCL. Master’s thesis, Institute of
Information Systems, Technical University of Vienna, 2000.

[17] O. Regev. Quantum computation and lattice problems.SIAM J.
Comput., 33(3):738–760, 2004.

[18] P. Selinger and B. Valiron. A lambda calculus for quantum compu-
tation with classical control.Mathematical Structures in Computer
Science, 16(3):527–552, 2006.

[19] P. Selinger and B. Valiron. Quantum lambda calculus. InS. Gay
and I. Mackie, editors,Semantic Techniques in Quantum Computation,
pages 135–172. Cambridge University Press, 2009.

[20] T. Sheard and S. Peyton Jones. Template metaprogramming for
Haskell. InProc. Haskell Workshop, 2002.

[21] P. Shor. Algorithms for quantum computation: discretelogarithms and
factoring. InProceedings, 35th Annual Symposium on Foundations of
Computer Science. CA: IEEE Press, 1994.

[22] A. van Tonder. A lambda calculus for quantum computation. SIAM
Journal of Computing, 33(5):1109–1135, 2004.

[23] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of
electronic structure Hamiltonians using quantum computers. Molecu-
lar Physics, 109(5):735–750, 2011.

	1 Introduction
	2 Quantum computation
	2.1 Interacting with a quantum device
	2.2 Basic properties
	2.3 Hardware independence

	3 Techniques used in quantum algorithms
	3.1 Quantum primitives
	3.2 Oracles
	3.3 Circuit families
	3.4 Circuit manipulation
	3.5 Classical processing

	4 Our proposal: Quipper
	4.1 Quipper is an embedded language
	4.2 Quipper's extended circuit model
	4.2.1 Ancillas and scope
	4.2.2 Assertive termination
	4.2.3 Mixed classical/quantum circuits

	4.3 The two run-times
	4.3.1 Circuit generation and circuit execution
	4.3.2 The parameter/input distinction

	4.4 Circuit description language
	4.4.1 Procedural paradigm
	4.4.2 Block structure
	4.4.3 Circuit operators
	4.4.4 Boxed subcircuits
	4.4.5 Run functions

	4.5 Quipper's extensible quantum data types
	4.6 Oracles in Quipper
	4.6.1 Automatic generation of quantum oracles

	5 The Triangle Finding algorithm in Quipper
	5.1 Background
	5.2 Top-level structure
	5.3 Code samples
	5.3.1 The subroutine o4_POW17
	5.3.2 The subroutine a6_QWSH

	5.4 Aggregate gate counts

	6 Comparing Quipper and QCL
	7 Conclusion
	8 Acknowledgements

