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1 Introduction

We provide three improvements to the standard implementation of the ground
state energy estimation algorithm via Trotter-Suzuki decomposition. These
consist of smaller circuit templates for each Hamiltonian term, parallelization
of commuting controlled rotations, and more efficient scheduling. These im-
provements may be regarded separately, and we anticipate that they may be
combined with other improvements to the standard implementation.

Note that we are not proposing a new algorithm for ground state energy es-
timation, nor are we claiming that the Trotter-Suzuki product formula family of
algorithms is the optimal choice for this problem. Rather, we are demonstrating
the use of circuit optimization techniques to give a very efficient implementation
of this particular algorithm.

2 Background

Ground state energy estimation is the problem of estimating the energy of the
ground state of a molecule whose geometry is already known. Thus, the ar-
rangement of the nuclei is given, and the task is to determine the minimum
energy among the possible states of its electrons. This quantity has the obvious
significance that it may be used to calculate the energy that is released during
a chemical reaction. It plays a basic role in industrial research.

The nuclei of the molecule are assumed to be fixed, and the electrons are
assumed to occupy only low-energy molecular orbitals |ψ0⟩, . . . , |ψm−1⟩. The
former assumption is known as the Born-Oppenheimer approximation, and it is
conceptually justified by the fact that nuclei have far more mass than electrons.
The latter assumption is conceptually justified by the fact that high-energy
orbitals are negligibly occupied in the ground state of the molecule.

The state of the electrons is described by a unit vector in the fermionic
Fock space, which has an orthonormal basis consisting of vectors of the form
|ψk1

⟩ ∧ · · · ∧ |ψkp
⟩, where 0 ≤ k1 < · · · < kp ≤ m − 1. Such a basis vector

describes a state in which exactly the orbitals |ψk1
⟩, . . . , |ψkp

⟩ are occupied.
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The creation operator a†k for orbital |ψk⟩ is then defined by a†k|ϕ⟩ = |ψk⟩ ∧ |ϕ⟩,
and the corresponding annihilation operator ak is just the adjoint of a†k.

The Hamiltonian of this system accounts for the attractive Coulomb force
between each nucleus and each electron and the repulsive Coulomb force between
each pair of electrons. The molecular orbitals are typically chosen to be real-
valued wave functions, and consequently the Hamiltonian is of the form

H =
∑
p,q

hpq(a
†
paq + a†qap) +

∑
p,q,r,s

hpqrs(a
†
pa

†
qaras + a†sa

†
raqap),

where the coefficients hpq and hpqrs are real numbers and the indices p, q, r, s
range over {0, . . . ,m− 1} in a way that makes the terms linearly independent.

The Jordan-Wigner transform yields an implementation of this Fock space
on a quantum computer. Formally, it is a unitary operator H → C2 ⊗ · · · ⊗C2,
where H is the Fock space and there are m tensor factors of C2. The Jordan-
Wigner transform maps each basis vector |ψk1

⟩ ∧ · · · ∧ |ψkp
⟩ to the basis vector

|b0⟩ ⊗ · · · ⊗ |bm−1⟩, where bk = 1 if the orbital |ψk⟩ is occupied and otherwise
bk = 0. Under this transform, the annihilation operator ak becomes the matrix
ak = Z⊗· · ·⊗Z⊗A⊗ I⊗· · ·⊗ I, where I = ( 1 0

0 1 ), Z = ( 1 0
0 −1 ), and A = ( 0 1

0 0 ).
The Jordan-Wigner transform depends nontrivially on the numbering of the

molecular orbitals. Let U be the Jordan-Wigner transform for some initial
ordering of the orbitals, and let V be the Jordan-Wigner transform after some
permutation π. Then, the unitary matrix V U† maps each standard basis vector
|b0⟩ ⊗ · · · ⊗ |bm−1⟩ to ±|bπ(0)⟩ ⊗ · · · ⊗ |bπ(m−1)⟩, where the sign depends on the
parity of the order permutation of the occupied orbitals.

The time evolution of the electron system is implemented approximately via
the fourth-order Trotter-Suzuki decomposition, which is a special case of the Lie
product formula. If the Hamiltonian is the sum of two matrices, H = H1 +H2,
then we approximate

e−iHt ≈
N∏

n=1

S2(α/n)S2(β/n)S2(α/n),

where S2(x) := e−iH1tx/2e−iH2txe−iH1tx/2 and the real constants α and β solve
2α + β = 1 and 2α3 + β3 = 0. In our case, the Hamiltonian H is the sum of
O(m4) terms, most of which are of the form hpqrs(a

†
pa

†
qaras + a†sa

†
raqap). The

fourth-order Trotter-Suzuki decomposition has a straightforward generalization
to this case.

This Hamiltonian simulation is used in combination with the quantum Fourier
transform to estimate the ground state energy of the molecule. Intuitively, in-
stead of simulating the evolution of the system for a single time quantity, we
simulate the system for a superposition of different time quantities. Thus, we
introduce an additional quantum system with some observable T , and the com-
posite system evolves as |ψ⟩⊗ |T = t⟩ 7→ e−iHt|ψ⟩⊗ |T = t⟩. This is implemented
by introducing “precision qubits,” which store the binary digits of t.

Over the course of the computation, the precision qubits and the orbital
qubits become entangled. If the precision qubits are initialized in a superposition
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of eigenstates of T with equal weight and the orbital qubits are initialized in a
state close to the ground state, then the reduced state of the precision qubits

is likely to be 2−p/2
∑2p

k=1 e
−iE0tk |T = tk⟩, where E0 is the ground state energy

and p is the number of precision qubits. Furthermore, if tk = kt1, then the
inverse Fourier transform of the reduced state will peak at |Ť = s⟩, where s is
the binary representation of E0 after the radix point for a unit of energy that
depends on t1.

Thus, implementing the Hamiltonian simulation and the quantum Fourier
transform and then measuring precision qubits yields a segment of the binary
representation of E0 that is determined by the number of precision qubits p and
the smallest evolution time t1.

3 Improved circuits for Hamiltonian simulation

3.1 The starting point

The straightforward implementation of this ground state energy estimation al-
gorithm is inefficient in a number of respects. We highlight three of them and
explain our improvements.

First, the terms of the Hamiltonian, such as hpqrs(a
†
pa

†
qaras+a

†
sa

†
raqap), are

traditionally decomposed as linear combinations of Pauli operators [6]. This is
because a matrix of the form eiθσ can be simply implemented for each angle θ
and each Pauli operator σ. This decomposition increases the number of terms
and hence the run time by a factor of eight. We avoid this factor of eight by
avoiding this linear decomposition.

Second, in previous implementations of this algorithm, the Trotter-Suzuki
decomposition was implemented in series, as they appear in the decomposition.
However, many of the factors in the Trotter-Suzuki decomposition commute
because they refer to disjoint sets of molecular orbitals. Furthermore, each factor
of the decomposition naively corresponds to many controlled rotations when
there is more than a single precision qubit, and these controlled rotations also
commute. We implement these commuting rotations in a parallel, decreasing
the run time by a factor of O(m).

Third, in order to implement a commuting set of factors in the Trotter-
Suzuki decomposition in parallel, we reorder the orbital qubits so as to group
the qubits that correspond to each factor. It is necessary to reorder the qubits in
this way because, while Hamiltonian terms that refer to disjoint sets of orbitals
do commute, their natural circuit implementations may overlap as an artifact of
the Jordan-Wigner transform. Naively, we would reorder the orbital qubits ac-
cording to an arbitrary sequence of partitions into singletons, pairs, triples, and
quadruples. Instead, we sequence the partitions by combining the circle method
for round-robin tournaments with a pairing method suggested by Nazarov and
Speyer [3].
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3.2 Better circuit templates

In many situations, it is useful for the Hamiltonian to be given as a linear
combination of Pauli operators. This leads to a natural but inefficient circuit
representation. For example, consider the term

H0132 = h0132(a
†
0a

†
1a3a2 + a†2a

†
3a1a0). (1)

After applying the Jordan-Wigner transform, this becomes

H0132 = h0132(A
† ⊗A† ⊗A⊗A+A⊗A⊗A† ⊗A†). (2)

Note that A and A† are not Pauli operators, but can be decomposed into Paulis
as A = 1

2 (X + iY ) and A† = 1
2 (X − iY ). Substituting this into (2) and simpli-

fying, we obtain the expression

H0132 =
1

8
h0132


X ⊗X ⊗X ⊗X − X ⊗X ⊗ Y ⊗ Y

+ X ⊗ Y ⊗X ⊗ Y + X ⊗ Y ⊗ Y ⊗X
+ Y ⊗X ⊗X ⊗ Y + Y ⊗X ⊗ Y ⊗X
− Y ⊗ Y ⊗X ⊗X + Y ⊗ Y ⊗ Y ⊗ Y

 , (3)

which is a linear combination of eight Paulis. Since the eight Pauli operators
commute, the matrix exponential e−iH0132t can be exactly written as a product
of eight terms e−

i
8h0132tX⊗X⊗X⊗X · · · e− i

8h0132tY⊗Y⊗Y⊗Y . Each of these eight
factors can then be easily written as a quantum circuit via suitable basis changes,
resulting in the following circuit:

0

1

2

3 H

H

H

H e−i θ
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H

H

H
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S† H
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H
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H
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S†

S†

H

H

H
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H

H

H S
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S†

S†

H

H

H

H e+i θ
8
Z

H

H

H

H S

S

S†

S†

S†

S† H

H

H

H e−i θ
8
Z

H

H

H

H S

S

S

S
(4)

We can find an equivalent circuit that is eight times smaller by bypassing the
Pauli decomposition and working directly from (2). Note that A = |0⟩⟨1| and
A† = |1⟩⟨0|, and therefore

H0132 = h0132(|1100⟩⟨0011|+ |0011⟩⟨1100|). (5)

The key observation is that the matrix (5) is of rank 2, and has a much more
compact circuit decomposition than (3), which is a sum of eight matrices of rank
16. Specifically, the operation e−iθ(|1100⟩⟨0011|+|0011⟩⟨1100|) can be represented by
the following circuit:

0

1

2

3 H e−iθZ H

(6)

Compared to (4), the circuit (6) is much smaller. On the other hand, it contains
a triply-controlled rotation, rather than an uncontrolled rotation, which a priori
requires more gates. However, it turns out that the latter makes no difference:
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in the context of quantum phase estimation, all of the rotations need to be con-
trolled anyway, and we have efficient ways of implementing multiply-controlled
rotations (see Section 3.3 below). The same optimization was proposed in [5,
Fig. 2].

Another notable feature of (5) and (6) is that the related Hamiltonian terms
H0231 and H0321 can be implemented by almost identical circuits. Indeed,
these correspond, respectively, to the operations e−iθ′(|1010⟩⟨0101|+|0101⟩⟨1010|)

and e−iθ′′(|1001⟩⟨0110|+|0110⟩⟨1001|), and can be implemented by the following re-
spective circuits:

0

1

2

3 H e−iθ′Z H

(7)

0

1

2

3 H e−iθ′′Z H

(8)

In fact, all three operations can be implemented with a single common basis
change:

0

1

2

3 H e−iθZ e−iθ′Z e−iθ′′Z H

(9)

Moreover, the three controlled rotations in the center are diagonal operators
and can be performed in parallel.

3.3 Parallel controlled rotations

Consider a number of z-rotations that are controlled by various qubits. Since
all controlled z-rotations are diagonal gates in the computational basis, they all
commute with each other, so in principle, they can all be performed in parallel.
Here, we consider advantageous ways to actually perform them in parallel in a
fault-tolerant regime.

We start with the simplest case of a z-rotation controlled by a single qubit.

e−iθZ

A good way to compile this is to decompose it into two uncontrolled rotations,
as follows:

e−iθZ
=

e−i θ
2
Z

e−i θ
2
Z
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Each uncontrolled rotation can then be fault-tolerantly implemented, for exam-
ple by the Ross-Selinger approximate synthesis algorithm [4] or by a fallback
method [1].

When we have more than one control, we can use Toffoli gates and an ancilla
to first consolidate the multiple controls into a single one. The Toffoli gates
require a number of T -gates, but that number is small compared to the number
of T -gates required to implement the rotations themselves.

e−iθZ

=
0 0

e−iθZ

When we have several rotations targeted at different qubits, we can perform
them in parallel, even if they share controls:

e−iθZ

e−iθ′Z

=

0

0

0

0

e−iθZ

e−iθ′Z

An interesting optimization is possible when we have n rotations that are tar-
geted at the same qubit, possibly using different rotation angles, but controlled
by different qubits. In this case, we only need n+ 1 uncontrolled rotations:

e−iθ1Z e−iθ2Z e−iθ3Z

=

e−i
θ3
2

Z

e−i
θ2
2

Z

e−i
θ1
2

Z

e−i
θ1+θ2+θ3

2
Z

Combining the above methods allows us to perform any number of controlled
z-rotations in parallel. Moreover, in the lattice surgery setting, fanout can be
performed in a single time step, allowing ancillas to be copied instantaneously.
Therefore, we can perform any number of controlled z-rotations in constant time
(i.e., the time depends only on the approximation accuracy ϵ, but not on the
number of parallel rotations).

3.4 Ski lift parallelization

The Jordan-Wigner transform maps each annihilation operator ap to the matrix
Z ⊗ · · · ⊗ Z ⊗A⊗ I ⊗ · · · ⊗ I, where the matrix A is in position p. Recall that
A = ( 0 1

0 0 ). Consequently, a Hamiltonian term of the form hpq(a
†
paq + a†qap) for

p < q is mapped to a matrix that acts nontrivially on all orbital qubits r for
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p < r < q. Thus, if p1 < p2 < q1 < q2, then the circuits implementing the time
evolution for Hamiltonian terms hp1q1(a

†
p1
aq1+a

†
q1ap1) and hp2q2(a

†
p2
aq2+a

†
q2ap2)

overlap. Overlapping circuits cannot be executed in parallel. However, if p1 <
q1 < p2 < q2, then the circuits implementing the time evolution for these two
Hamiltonian terms do not overlap, and hence they can be executed in parallel.
We use fermionic swap operators to reduce the first case to the second.

For molecular orbitals p ̸= q, we can define the swap operator sp,q on the
electronic Fock space by sp,q|ψp⟩ = |ψq⟩, sp,q|ψq⟩ = |ψp⟩, and sp,q|ψr⟩ = |ψr⟩
for r ̸= p, q. Of course, sp,qapsp,q = aq. Thus, we can use these swap operators
to implement a change of basis in which the circuits implementing the time
evolution for Hamiltonian terms hp1q1(a

†
p1
aq1+a

†
q1ap1

) and hp2q2(a
†
p2
aq2+a

†
q2ap2

)
do not overlap. If p1 < p2 < q1 < q2, then such a change of basis is clearly
achieved by sp2,q1 . The same obstacle occurs for Hamiltonian terms involving
three or four distinct qubits, and the same solution applies. We refer to such a
change of basis as a fermionic permutation.

The Jordan-Wigner transform of the swap operator sp,q has a simple form. It
is a self-adjoint unitary operator that commutes with ar for r ̸= p, q and satisfies
sp,qapsp,q = aq. These two properties imply that sp,p+1 has the following circuit
implementation after the Jordan-Wigner transform:

sp,p+1 =
p

p+ 1
=

Z

Since the fermionic transposition operators sp,p+1 satisfy the braid relations, we
can define the more general sp,q in terms of them. For example, sp,p+3 can be
defined as follows:

sp,p+3 =

p

p+ 1

p+ 2

p+ 3

Every fermionic permutation is a composition of fermionic transpositions sp,p+1.
To decrease the run time, we should minimize the depth of these permutation
circuits.

The terms of the Hamiltonian can be classified according to the number of
distinct orbitals that they involve. That number may be 1, 2, 3, 4. We refer
to these terms as singleton, pair, triple, and quad terms, respectively. We can
implement all the singleton terms in parallel. For pair terms, it is natural to use
Kirkman’s circle method for round-robin tournaments [2]. This method ensures
that we implement these terms in a maximally time-efficient way and that we
minimize the time spent on swapping the orbitals to arrange each new pairing.

Kirkman’s circle method schedules a round-robin tournament for an even
number of competitors by fixing one of those competitors and cycling the re-
maining competitors. We may imagine the circle method as a ski lift with one
skier, who is not on the ski lift, at the bottom of the hill and the other skiers
seated on the ski lift as it cycles. At each stage of the operation, we pair skiers
seated across from each other, and we pair the skier seated at the bottom with
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the stationary skier:

6

45

23

01

7

Thus, if we have 2n skiers, the ski lift goes through 2n− 1 stages of operation,
and we see n pairs at each stage. If we have 2n− 1 skiers, then we simply omit
the stationary skier, and whoever is at the bottom of the ski lift will not be
paired in that round.

Here is an example showing the 7 stages of the circle method for 8 orbitals:
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P
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P

P

P
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P
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4
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P
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P
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1
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0
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P

P

P

P

1
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0
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2

6

4

7

P

P

P

P

We solve the scheduling problem for triple terms by a shrewd application of
Möbius transformations over finite fields. We find the smallest prime p ≥ m−1.
Recall that Fp is the field of integers modulo p, and that a Möbius transformation
is a permutation of Fp ∪ {∞} of the form z 7→ (az + b)/(cz + d) for parameters
a, b, c, d ∈ Fp. Each Möbius transformation of order three partitions Fp ∪ {∞}
into orbits, at most two of which are singletons. Furthermore, every subset of
cardinality three is an orbit of exactly two such Möbius transformations, which
are each other’s inverses. Thus, if m = p + 1, then we obtain a sequence of
partitions of our orbital qubits into triples such that every triple is in exactly
one partition. We obtain maximal parallelization for the implementation of
these Hamiltonian terms. If m ̸= p+ 1, then we simply ignore partition blocks
that contain elements greater than m− 1.

We solve the scheduling problem for quad terms by combining the ski lift
method with Möbius transformations. The intuition is that each seat of the ski
lift will now hold two skiers instead of just one. A single cycle thus implements
all possible quadruples of orbital qubits that may be obtained from a single
partition of the orbital qubits into pairs. We use Möbius transformations to
find a small set of such partitions that implements every quadruple, applying
an idea of Nazarov and Speyer [3]. Specifically, we use Möbius transformations
of order two to obtain partitions of Fp ∪ {∞} into pairs. Each quadruple is
implemented by partitions arising from three such Möbius transformations. By
considering the composition of these three Möbius transformations, we conclude
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that it is sufficient to use only those Möbius transformations whose determinant
ad − bc is a quadratic residue modulo p. As in the case of triples, we ignore
partition blocks that contain elements greater than m− 1 in the common case
that m ̸= p+ 1.

4 Putting everything together

Figure 1 shows a singleton stage, pair stage, triple stage, and quad stage in the
case of 8 orbitals and 2 precision bits. Figure 2 shows a ski-lift schedule for a
single Trotter-Suzuki step for 8 orbitals, including the fermionic permutations.
We did not show any precision bits in this schedule; each of the boxes marking
singleton, pair, triple, and quad circuits must be expanded along the lines of
Figure 1, and the precision bits enter the picture at that point.

Comparing our implementation of a Trotter-Suzuki step for ground state
energy estimation with the baseline implementation of Whitfield et al. [6], for
m = 120 orbitals and b = 1 precision bit, we find a decrease in circuit rotation
depth (counting only rotation gates) by a factor of 720. Of this, a factor of 8
is due to improved Hamiltonian circuits (Section 3.2), and a factor of 90 is due
to ski-lift parallelization and parallel controlled rotations (Sections 3.3 and 3.4).
The circuit width increases by a factor of approximately 2. This is due to the
fact that our parallel scheduling makes use of qubits that were previously idle.

In addition to these improvements in the rotation depth, we also optimized
the fermionic swap depth, requiring only a constant depth of non-rotation gates
per stage on average. By contrast, the baseline implementation requires Clifford
basis changes whose average depth per stage is linear in the number of orbitals.
Moreover, the baseline circuit’s length increases linearly with the number of
precision bits b while its width remains essentially constant, whereas in our im-
plementation, the width increases linearly with b while the length stays constant
(assuming that sets of gates that can be done in constant time in lattice surgery
are counted as constant depth).
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Figure 1: A typical singleton, pair, triple, and quad stage with b = 2 precision
qubits and m = 8 orbital qubits. The topmost 2 inputs are the precision qubits
and the bottommost 8 inputs are the orbital qubits. In (a), (b), and (d), note
that all single-qubit rotations are done in parallel, using the method of Sec-
tion 3.3 to decompose controlled rotations. The circuit (c) requires 3 rounds of
rotations, because for each triple of orbitals (p, q, r), there are Hamiltonian terms
of the forms a†pa

†
qaqar+a

†
ra

†
qaqap, a

†
qa

†
papar+a

†
ra

†
papaq, and a

†
pa

†
raraq+a

†
qa

†
rarap.

Since these do not commute with each other, they cannot be performed in par-
allel. By contrast, the circuit (d) requires only one round of rotations, because
Hamiltonian quad terms on (p, q, r, s) are of the forms a†pa

†
qaras + a†sa

†
raqap,

a†pa
†
raqas + a†sa

†
qarap, and a

†
pa

†
saraq + a†qa

†
rasap. These terms do commute with

each other, and therefore can be performed in parallel. In (a)–(d), the multiply-
controlled not gates that are used to prepare and uncompute the various ancillas
can all be realized in constant time in the lattice surgery framework, i.e., in time
that is independent of both b and m.
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Figure 2: An example ski-lift schedule for 8 orbitals. This circuit should be read
from top left to bottom right like a musical score. Singletons, pairs, triples, and
quads are denotes S, P , T , and Q, respectively. Note that as the number of
orbitals increases, quad stages will dominate the schedule. Also note that the
transition from one quad stage to the next typically has a permutation depth of
4, but occasionally has a greater permutation depth. These greater-depth cases
happen only O(1/m) of the time, so the average permutation depth per stage
is asymptotically constant.
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