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Quantum information-flow,
concretely, abstractly

Bob Coecké
Oxford University Computing Laboratory

Abstract

These ‘lecture notes’ are based on joint work with Samson Abramsky. | will survey
and informally discuss the results of [3, 4, 5, 12, 13] in a pedestrian not too technical
way. These include:

e ‘The logic of entanglementthat is, the identification and abstract axiomatiza-
tion of the‘quantum information-flowwhich enables protocols such as quan-
tum teleportatiort. To this means we definesfrongly compact closed categories
which abstractly capture the behavioral properties of quantum entanglement.

e ‘Postulates for an abstract quantum formalismwhich classical information-
flow (e.g. token exchange) is part of the formalism. As an example, we provided
a purely formal description of quantum teleportation anaved correctness in
abstract generality In this formalismtypes reflect kindsontra the essentially
typeless von Neumann formalism [25]. Hence even concretely this formalism
manifestly improves on the usual one.

e ‘A high-level approach to quantum informatics’lndeed, the above discussed
work can be conceived as aiming to solve:

777 __ high-level language

von Neumann quantum formalism ~— low-level language °

| also provide a brief discussion on havassical and quantum uncertaingan be
mixed in the above formalism (cf. density matricés).

1 What? When? Where? Why?

First of all, for us ‘quantum’ stands for the concepts (both operational and formal) which
had to be added to classical physics in order to understand observed phenomena such as

*Howard Barnum, Rick Blute, Sam Braunstein, Vincent Danos, Ross Duncan, Peter Hines, Martin Hyland,
Prakash Panangaden, Peter Selinger and Vlatko Vedral provided feedback. Samson Abramsky and Mehrnoosh
Sadrzadeh read this manuscript.

1The identification of quantum information-flow was the content of my QPL | talk.

2This abstract quantum formalism will be presented at LiCS'04 in a joint talk by Samson Abramsky and
myself, and also in Samson Abramsky'’s invited lecture.

3This will be discussed in Samson Abramsky’s invited lecture at LiCS'04.

4My talk at QPL Il will to a great extent cover this particular feature.
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the structure of the spectral lines in atomic spectra, experiments exposing non-local corre-
lations, seeminglytr symmetries, etc. While the basic part of classical mechanics deals
with the (essentially) reversible unitary dynamics of physical systems, quantum required
adding the notions of measurement and (possibly non-local) correlations to the discussion.
The corresponding mathematical formalism was considered to have reached its maturity
in [25]. However!

Where does “it” flow? Consider quantum teleportation [9],
d’out - ¢7,n

5

VEpR

whereU ;pr denotes an EPR-pail/z.;; a Bell-base measurement,c B? the trans-
mission of a two-bit token representing the measurement outcoméggf; andU,, the
corresponding unitary correction required for correctly teleporting the stateln this
process continuous data is transmitted (the state = ¢;,,) while only using a two-bit
classical channel. So where does the ‘additional information’ flow? The quantum formal-
ism does not tell us in an explicit manner. Clearly it has something to do with the nature
of quantum compoundness, but, what exactly? Note that this reasonably simple protocol
was only discovered some 60 years after von Neumann’s formaléouldn't it be nice

to have a formalism in which inventing quantum teleportation would be an undergraduate
exercise?

Where are the types? While in the lab measurements are applied to physical systems,
application of the corresponding self-adjoint operatér: H — 'H to the vector) € H

which represents the system’s state, hence yieldif{g’), does not reflect how the state
changes during the act of measurement! The actual change-is P;(¢) for spectral
decomposition M = >, a;i - P;, whereq; is the outcome of the measurement. In addition

to this change of state a measurement involves provision of data to ‘the observer’ cf. tele-
portation where this data determines the choice of the unitary correction. This contradicts
what the corresponding types seem to indicate. The same argument goes for the composite
of two self-adjoint operators which in general is not self-adjoint while measurements can
be performed sequentially in the lalouldn't it be nice if types reflect kinds?

Much worse even, where is the classical information and its flow? Indeed, the prob-
lem regarding types is directly connected to the fact that in von Neumann’s formalism
there is no place for storage, manipulation and exchange of the classical data obtained
from measurementdMe want a quantum formalism which allows to encode classical in-
formation and its flow, and hence also one which has enough types to reflect this!

SRecall that each self-adjoint operator can be written as a weighted sum (or infinite dimensionally, an integral)

of mutually orthogonal projectors, i.B;0P; = 0fori # j, projectors themselves being idempotent self-adjoint
linear operators (e.g. cf. [13A,B).
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What is the true essence of quantum? John von Neumann himself was the first to look

for this, teaming up with the ‘king of lattices’ Garrett Birkhoff [10]. It is fair to say that as

an attempt to understand ‘the whole of quantum mechanics’ this particular ‘quantum logic’
program has failed. While it provided a better understanding of quantum superposition and
the superselection rules, it failed at teaching us anything about quantum entanglement, and
definitely didn't teach us anything on how quantum and classical information interact. So
lattices don’t seem to be capable of doing the jthich mathematical setting provides an
abstract quantum formalism, and its corresponding logic?

2 The logic of entanglement

A mathematics exercise. The ‘Where does “it” flow?’ question was addressed and
solved in [12, 13]. But the result challenges quantum mechanics’ faithfulness to vector
spaces! We start by playing a quiz testing the reader’s knowledge on the Hilbert space
tensor product. Consider the situation depicted below where all boxes represent bipartite
projectors on one-dimensional subspaces of Hilbert spges 7 ;, that is, linear maps

PEIHZ‘®H]'—>H¢®HJ' (I)i—><\I/E‘(I)>\I/E

with Uz € H; ® H]‘ and|\IlE| =1 SOPE(\I’E) = Vg, ¢zn € H1i, Gout € Hs, Pip, €
Ho ® Hz @ Hq @ Hs and hencaly,, Uout € H1 @ Ho @ Hy ® Hy ® Hs,

Yout 1= Yvi Yy bout?

Ui = Din Din

’ What is¢,,;? (up to a scalar multiple is olk)

In algebraic terms this means solving
k- C(¢in @ Pin) = Ui ® Uvmt ® Pout
in the unknowny,,,; for k € C and
¢ = Pu®@Pwm®1s5)o(li®@Py®1y5)0 (11 @ Py ®145)0
(li2®@Py ®15)0(l12@Pr®15) 0 (1; ® P ® Pr)
wherel; is the identity orf; and1;; is the identity orf; ® H;.
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At first sight this seems a randomly chosen nasty problem without conceptual sig-
nificance. But it is not! Observe that bipartite vectdrsc H; ® H-, are in bijective
correspondence with linear mags: H; — Ho through matrix representation in bases

{ef"}; and{e{”}; of H, andHa,

W) @) T (1) @)
\II:E mij-€; ®e; «—— — fue '_’Zmij‘ej \
ij mE1 - Mgnp J

or in bra-ket/qu-nit notation,
Zmij |ij) :Zmij | )@l j) < Zmij<i =) J)-
17 17 17

This correspondence lifts to an isomorphism of vector spaces. As an example, the (non-
normalized) EPR-state corresponds to the identity

o0y 1) <= (5 1) = 1= (0l-p0)+ (1] 1),

In fact, the correspondence betwédén ® Hs and anti-linear maps is a more natural one,
since it is independent on the choice of a baseHoy

Zmimw:Zmij 1)@ j) «— Zmij (—1i)4),

or equivalently, the correspondence betw&gn® H, and linear maps, wherkj is the
vector space of linear functionals: H; — C which arises by setting := (¢ | —) for
eachy € H;. We will ignore this for now (see [12] for a detailed discussion) and come
back to this issue later.

Since we can now ‘represent’ vectois: € H,; ® H; by linear functions of type
H; — H;, and hence also the projectdg which appear in the above picture, we can
redraw that picture as

Yout := Wyvi Yy Pout?

Yin :=  Pin Din

where nowliyy «— f; andWyy «—— f3, and the arrows— 7, — specify the domain and
the codomain of the functiong, and, | should mention that the new (seemingly somewhat
random) numerical labels of the functions and the direction of the arrows are well-chosen
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(since, of course, | know the answer to the quiz question). We claim that, proiged
(see [12]),

bout = (fzo fro feo fso fao fzo fao f1)(din)

(up to a scalar multiple), and we also claim that this is due to the fact that we can draw a
‘line’ of which the allowed passages through a projector are restricted to

that is, if the line enters at an input (resp. output) of a bipartite box then it has to leave by
the other input (resp. output) of that box (note the deterministic nature of the path),

Pout = (fS ©...0 fl)(¢zn)
A

When we follow this line, we first pass through the box labelgdhen the one labelef},

and so on untilfs. Hence it seem&s if” the information flows from;,, to ¢,,,; following

that line and that the functiong labeling the boxes act on this informatioflso, ¢,.,; =
(fso...o f1)(¢in) does not depend on the input of the projectoraty Hs @ Hy @ Hs

and, more importantly, the order in which we apply the projectors does not reflect the order
inwhich f1, ..., fs are applied ta;, in the expressiofifs o ... o f1)(¢:n). Doesn't this

have a somewhat ‘acausal’ flavor to it?

The logic of quantum entanglement. We claim that the above purely mathematical
observation exposesgmantum information-flowlt suffices to conceive the projectdts:
as appearing in the spectral decompositions of self-adjoint operators= >, a= ;- P=;
representing quantum measurements, that is, for sonehavePz = Pz ; (hence the
outcome of the measurement representedfyis az ;). As an example, consider

Pout = (1 ° 1)(¢Zn) = Qin
A
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where, since all labeling functions are identities, both projectors project on the EPR-state.
Since the first projector corresponds to ‘preparing an EPR-state’, this picture seems to
provide us with a teleportation protocol,

d)out - ¢zn

Pepr

VEPR

Pin
However, physically we cannot implemdrtpr on its own ‘with certainty’. ButPgpg is
part of Bell-base measurement together with three other projectors. We denote the corre-
sponding labeling functions b$s, 53, 84. The grey boxes below denote unitary transfor-
mations. We have

Pout=9¢in Dout=¢in Pout=¢in bout=¢in
A A A A
1 | | V2 | ‘ V3 | | Ya
‘ B2 ‘ ‘ B3 ‘ ‘ Ba ‘
i i
T ! ‘—‘ I ! I l ‘\ ! \‘ l ‘\ ! \‘
()
¢in ¢'in d)ln ¢in

wherew; o §; has to be the identity sg; = 3;'. These four pictures together yield the

full teleportation protocol! The classical communication is encoded in the fact that in each
picture the unitary correctiofy; depends or;, that is, the measurement outcome. Hence
the classical communication does not contribute to the transmission of the data, it only
distributes the knowledgabout ‘which of the four pictures is actually taking place’.

To conclude this paragraph we stress that the functional labels are not actual physical
operations but only arise in the above discussed mathematical isomorphism. Further, in
the generic example

bout = (f2 0 f1)(in)
A
fi

f2

A
the order of the physical operations is opposite to the order in which their labels apply to
the input state in the expressi¢fy o f1)(¢i ). Algebraically®

ke C(hin @ in) = V5, @ (f20 f1)(din) for (= (Pr@1)o(10Py)
with ¥ ; <= f andP () = ¥, as a new notation. Slightly simpler,

(Pfl® 1)(¢in ® \I/fg) =V ® (fz0 f1)(Pin)

by conceiving the first projector as a state. Furthermore, the above diseusskd ® Ho
which is necessary to have a base-independent correspondence with linear fuigtions

6The pictures really look much better than the formulas, don't they?
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not a bug but a feature’it actually witnesses (by means of a phase conjugation) the fact
that the line changes its temporal direction every time it passes a projector box (see [12]).

Using the same line of thought it is also easy to reconstruct other protocols such as
logic-gate teleportatiorf15] and entanglement swappin@7], and, the quantum infor-
mation-flow interpretation also extends to multipartite projectors. We refer the reader to
[12, 13] for details on this.

The question Samson and | then asked was: “Are these information-flow features
specifically related to the Hilbert space structure? Orto ...

Sets, relations and the cartesian product. Doesn'’t sound very ‘quantum’ you say?
Let's see. We make the following substitutions in the above:

Hilbert space H ~ set X
linear function f ~» relation R

tensor product ® ~» cartesian product x

Can we also translate projectors to this world of relations? Observe that for projectors on
one-dimensional subspaces, which take the general Ryrme= (¢ | —)-| ¢) : H — H,

~

we have| ¥)®| ¢) «—— (¥ |-)-| ), that is, projectors correspond with symmetric
pure tensors. By analogy we define a projector of t{pe> X asA x A C X x X inthe
world of relations HenceR x R C (X xY) x (X x Y) with R C (X xY) is a bipartite
projector in the world of relations which we denote By in analogy withP ;. Since for
the identity relationl € X x X we haver;lzs < x1 = x5 and since

Pri=RXR= {((331»?/1)’ (z2,52)) € (X xY) x (X xY) $1Ry17l‘2Ry2}»
forRi C X xY andRy; CY x Z we have
(w1,y1,21)(1x ® PR, ) (22,92, 22) < y1Raz1 and yaRy20, and, x1 = x5,
(T2,Y2,22) (PR, ® 12)(73,¥3,23) < 2Ry and x3R1y3, and, 22 = 23.
Settings;, := 1, Sout := 23 and using the underlined expressions,
(Sin»y1,21) (Pry® 1) 0 (1 @ Pry)) (%3, Y3, Sout)

entailss;, (Rz o R1)sou:.” And this is not an accident!

3 The abstract algebra of entanglement

Categories for physical systems. Which abstract structure do Hilbert spaces and rela-
tions share? First of all, the above construction would not work if instead of relations we
had taken functions. The importance of considering appropriate maps indicates that we
will have to considecategories As theoretical computer scientists know, categories are

7Again we ignore un-naturality, that is, the slight base-dependency.
8Recall that a relation of typ& — Y is a subset o x Y (cf. its ‘graph’).
9We invite the reader to make a picture of this.
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not just a language, nor metamathematics, nor hyper abstraction. They are mathematical
objects in their own right which arise very naturally in ‘real situations’. E.g. one takes the
state spaces of the systems under consideration to lobjbets and (physical) operations
on these systems to Imorphismgincluding askip operation), the axioms of a category
are then satisfied by the mere fact that operations cawimposedWe denote byrel the
category of sets and relations, Bgtthe category of sets and functions, BgHilb finite
dimensional (complex) Hilbert spaces and linear maps, and more generaliy] Ygcyk
finite dimensional vector spaces over a fiild

If instead of the cartesian product we would have considered disjoint union on sets,
again things wouldn’t have worked out. Also in the quantum case the use of the tensor
product is crucial. All this indicates that we want some spedbifienctor X to live on our
category,x onReland® on FdVeck. Intuitively, we think of a bifunctor as an operation
which allows to combine systems, and also the operations thereon, abdutihaoriality
property has a clear physical interpretation:Sif and Sy are distinct physical entities,
when performing operatio®; on S; andO, on S, the order in which we perforr®,
and O, doesn’t matter. One typically thinks ¢dcal operationson spatially separated
systems.

In categoriesglementf an objectA can be thought of as morphisms: 1 — A
wherel is a unit for the bifunctor, ieAXI ~IX A ~ A. In (FdHilb, ®) we have
I:= C, and indeed, mapg : C — H are in bijective correspondence with itself, by
consideringg(1) € H. In (Set, x) and (Rel, x) we havel := {x}, i.e., a singleton.
In (Set, x) mapsq : {x} — X are in bijective correspondence with elementsXoby
consideringy(x) € X. But notin(Rel, x)! Morphismsg C {x} x X now correspond to
all subsets ofX', which can be thought of asiperposition®f the individual element¥?

We want not only a unit for X, but a full symmetric monoidastructure, that is, we
want the followingnatural isomorphism&*

M A~IXKA pa:A~AKI oap: AXB~BXA

OZA,BL*:A&(B‘ZC)Z(A&B)@C.

Note here that we do not requiké-projectionsps p : AX B — A nor X-diagonals

Ay A — AKX A to exist. More precisely, we don't want them to exist, and this will

be guaranteed by a piece of structure we shall introduce. In physical terms this non-
existence mearnso-cloning[26] andno-deleting[23]. In categorical terms it means that

X is not a categorical product? In logical terms this means that we are dolimgar logic

[14, 20, 21, 24] as opposed to classical logic. In linear logic we are not allowed to copy
and delete assumptions, thatispA B = A andA = A A A are not valid.

Compact closure and information-flow. Crucial in the analysis of the quantum infor-
mation-flow wasH; ® Ha ~ H; — H2. In categorical terms, making sense’f —

10Compare this to ‘superposition’ in lattice theoretic terms: an atomic lattice has superposition states if the
join of two atoms has additional atoms below it (e.g. cf. [11]).

11A categorical isomorphism is a morphisfn A — B withaninversef—! : B — A, thatis,fof 1= 14
andf~lo f = 1. A natural isomorphism is a strong notion of categorical isomorphism. For vector spaces it
essentially boils down to ‘base independent’, e.g. there exists a natural isomorphism (fttype Ha) —
(H1—H2) but not one of typdH1 ® H2) — (H1 — Hz2), where we treat{; — H2 as a Hilbert space.

125ee below where we discuss biproducts.
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H, requires the category to b#osed!® To give sense to the we require it to bex-
autonomoug8],** and finally, requiring”; ® Ha ~ H; — Ho implies that the category is
compact closeflL8]. In logical terms this means that we have the multiplicative fragment
of linear logic, with negation, and whecenjunction is self-duathat is, it coincides with
disjunction — indeed, you read this corredtA B ~ AV B.

But we will follow a different path which enables us to use less categorical jargon.
This path is known in category theory circlesAsstralianor Max Kelly style category
theory. Although this style is usually conceived (even by category theoreticians) as of
an abstrac® nature, in our particular case, it's bull's-eye for understanding the quantum
information-flow®

In [19] a categonC is defined to be compact closed iff for each objddhree addi-
tional pieces of data are specified, an object dendteda morphismn, : I — A* X A
calledunitand a morphism, : AXIA* — I calledcounit which are such that the diagram

A AR AR (A" K A)
~ 14 Xna
14 ~
~ X1
A INAA"A (ARA)RA

and the same diagram fot* both commute. Although at first sight this diagram seems
quite intangible, we shall see that this diagram perfectly matches the teleportation protocol.
Both (Rel, x) and(FdVecg, ®) are compact closed, respectively fir := X, nx =
{(x,(z,2)) | x € X} andex = {((z,z),*) | € X}, and, forV* the dual vector space

of linear functionals, fo{e; }:=7 being the base df * satisfyinge;(e;) = d;;,

=n
77V531'—>Zéi®€i and ey ie; ®ej > 0y
i=1

(if V has an inner-producg; := (e; | —)) Note thatny (1) can be thought of as an
abstract generalization of the notion of an EPR-state.
Given thenameandconameof a morphismf : A — B, respectively

Ffl=(1Rflona:I1—-A"XKB and Lfii=eq0(fXN1): AKB" -1,

one can prove th€ompositionality Lemma ([4] §3.3), diagrammatically,

13For a monoidal category to be closed indeed means that we can ‘internalize’ morphisi sets3 as
objects, also referred to as the category having exponentials. Typically, one thibdkastonjunction and of
this internalization as implication.

144-autonomy means that there exists an operation the monoidal category from which the internalization
of morphism sets follows asd X B*)*, cf. classical logic where we havé = B = -AV B = -(A A -B)
by the De Morgan rule.

15When we spell out this alternative definition of compact closure it indeed avoids much of the categorical
jargon. But it also has a very elegant abstract formulation in ternicategories a compact closed category
is a symmetric monoidal category in which, when viewed as a one-object bicategory, every oadraslh left
adjoint A*.
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A ARI —— AR (B*KC)
~ WA
fzof1 ~
~ X1
C ime S22 L mpre

for f : A — Bandf; : B — C. This lemma generalizes the defining diagram of

compact closedness singg = "14'andey = L1445 (cf. EPR-state— 1). The careful
reader will have understood the picture by now,

I c C
PN lemma
v -

I
hence it seems as if there is an information flow through names and conames,

Are we really there yet? We actually have two things, names and conames, and names
act as ‘the output of a bipartite projector’ while conames act as ‘the input of a bipartite
projector’. The obvious thing to do is to glue a coname and a name together in order to
produce a bipartite projector.
\ \ \ \
FfT
P =
f dh

\ \ \ \
However, we have a type-mismatch.

Py :;I—f—IO\_fJCAIEB*HAﬂZB

To solve this problem we need a tiny bit of extra structure. This bit of extra structure will
capture the idea afomplex conjugationWhen conceiving elements Bsrac-kets it will
provide us with a notion obirac-bra.

Strong compact closure, inner-products and projectors. The assignmenfi — A*
which arises as part of the definition of compact closure actually extends to one on mor-
phisms,

B - IX B* - (A*RA)KB*
~ na X 1«
* 14-K fR1p-
~ 14X
A* < AR 2 ZB A+ (B BY)

and again this looks much nicer in a picture,
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For vector spaces the matrix ff is thetransposeaf the matrix off when taking{e; } \=7
as base fol/* given basee; }i=7 of V. For relations* is therelational conversef R.
One verifies thaf )* : C — C is acontravariant functorthat is(f1 o f2)* = f3 o f{,
and that there exists a natural isomorphigiti ~ A.

Definition. A strongly compact closed categddj is a compact closed category for
which A = A** and for which the assignment — A* has also atinvolutive covariant
functorial extensionwhich commutes witlg )*.

We setf — f, for this functorial extension. For each morphigm A — B we define
its adjointand abipartite projectoras

‘f]L =) " =(")«:B—A and Py:="floLf,u: A*KB— A*"X B,

and we call an isomorphisiii : A — B unitaryiff U~! = UT. An abstract notion of
inner-productalso emerges. Given elemenisg : I — A we set(y) | ¢) := T o ¢ €
C(I,I) whereC(I, ) are the morphisms of tyde— I — we discuss thesscalarsin more
detail below. We can now prove the usual defining properties of adjoints and unitarity in
abstract generality,

(flov | ¢y = (flo)lop=vlofop=(0]fod)a,

{Uotp|Uop)p=(UToUot|p)a=(]p)a.

When callingy : I — A aket theny! : T — A is the correspondingra and the scalar
¢t o1y : 1 — Tis abra-ket Hence strong compact closure provides a nice and juicy lump
of Hilbert space — see [4]7 and [5]§2 for details.

The categoryRel, x) is trivially strongly compact closed faR, := R, sOR" = R*,
that is, adjoints are relational converses. The same goes for any compact closed category
where A* = A. For (FdVeck, ®) we don't haveV* = V, nor does the above defined
compact closed structure satigiy¥* = V, so it cannot be extended to a strong compact
closed structure. But fdK := R, finite-dimensional real inner-product spaces are strongly
compact closed fol’ := V* andey := (— | —), and forK := C, our main category
(FdHilb, ®) is also strongly compact closed when we téKeto be theconjugate space
that is, the Hilbert space with the same element&{dsut with o e« ¢ := & ey ¢ as
scalar multiplication and¢ | ¥)y~ := (¢ | )% as (sesquilinear) inner-product. We can



68 B. Coecke

thensekty : HOH* = 1:: 9 ® ¢ — (¢ | ¢). One verifies that we recover the usual
notion of adjoint, that is, theonjugate transposevhere( )* provides transposition while
()« provides complex conjugation.

Let us end this paragraph by saying that most things discussed above ext#imito
dimensionakettings when using ideas from [2].

A note on categorical traces. This paragraph slightly diverges from our story line, but
we do want to mention that much of the inspiration for [12, 13] emerged from [3] where we
studied the physical realization of ‘abstract traces’ [17], which generalize tradifeeg

back traceq1, 7]. It turns out that both ofiRel, x) and(FdVeck, ®), due to compact
closure, the trace also admits a feedback-loop type interpretation, but a linear ‘only-use-
once’ one. Please consult [5] for more details and some nice pictures.

4 Beyond von Neumann'’s axiomatics

Biproducts. Strong compact closure provides a serious lump of Hilbert space, but we
need some additional types which enable to encode classical information and its flow in
our quantum formalism. They will capture ‘gluing pictures together’ and ‘distributing
the knowledge on in which picture we are’ (¢R2). To this means we udegiproducts
that is, objects4A B B which both are theroductand thecoproductfor A and B, and
corresponding induced morphisnfsfg : ABB — CHDfor f : A — C and
g : B — D. Contrary toX, biproducts go (by definition) equipped wititojections
p; « B;A; — A;, also withinjectionsg; : A; — H;A;, and withpairing andcopairing
operations,f;); : A — H;A; and[f;]; : B;A; — A, for morphismsf; : A — A;
andg; : A; — A with coinciding domain and codomain respectively. From these we
can constructliagonalsandcodiagonals A4 := (14,14) : A > AB AandV, =
[14,14] : AH A — A. This ‘non-linear’E-structure encodes that there is no difference
between looking at two pictures separately, or together — the components of a compound
guantum system cannot be considered separately, igknear.

We take the projections and injections such that they work nicely together with the
strong compact closure by settiqb: p; (and hence)j = ¢,;). Of crucial importance for
us is thedistributivity of X overf,® that is, there is a natural isomorphism

DISTA&(BlEBQ)Z(A@Bl)BH(A@BQ)

For (Rel, x) thedisjoint union+ provides a biproduct structure with inclusion as in-
jections. FoFdHilb, ®) thedirect sum® provides a biproduct structure with coordinate
projections as projections.

Categorical guantum mechanics.We define a quantum formalism relative to any strong-
ly compact closed category with some biproducts.

i. We takestate spaceto be objects which do not involve explicit biproducts and use
X to describe compound systems. The basita unitis a state spac@ which is unitary
isomorphic tal B I, which in the case ofRel, x,+) whereI BI = {x}+{x} yields the

18which follows by closedness & andH being a coproduct.
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boolean typeand in the case ofFdHilb, ®,®) whereI HI = C & C yields thequbit
type

ii. Explicit biproducts express ‘different pictures’ due to distinct measurement out-
comes, they enable to encatlassical data The distributivity isomorphismist expresses
exchange of classical datdsee below)

iii. We have already defined bipartite projectors. To turn them into a measurement we
need to glue a complete family of mutually orthogonal ones to each other. More generally,
we define aspectral decompositioto be a unitary morphisiy : A — H; A;. We define
the correspondingon-destructive measuremeatbe the copairing

(P;); : A— H;A where Pj:ﬂ';OTrj:AHA for mj=p;oU

with p; : B;A4; — A; the projections for the biprodués; A;. As shown in [4], these
generalprojectorsP; : A — A are self-adjoint, mutually orthogonal, and their sun is

— we discuss theum of morphismbelow. When the spectral decomposition is of type
A — H;I the corresponding measuremennhin-degeneratedWe call such a spectral
decomposition, which by the defining property of products can be rewrittgfr;as :

A — H;I, anon-degenerated destructive measureméiar an explicit definition of an
abstract Bell-base measurement any other measurement which allows teleportation,
we refer to [4].Isolated reversible dynamids unitary.

iv. The passage from a non-degenerated non-destructive measurement to a destructive
one involves droppingy; := ﬂ : I — A. We conceive such a component aprapa-
ration. Hence a non-destructive measurement decomposes)if which gives the mea-
surement’s outcome, ang, which gives the state ‘after the collapse’ (cf. von Neumann’s
projection postulate).

Abstract quantum teleportation. The right-hand side of the diagram in Figurgites

a complete description of the teleportation protocdlhe left-hand side expresses the
intended behavior (obtaining an identity in each of the four pictures). In [4] we proved
correctnesshe diagram commutés

Abstract presentations and proofs of correctnedsg@it gate teleportatiorj15] and
entanglement swappirig7] can be found in [4].

Immediately after the Bell-base measurement the tyd@BiS11) X Q whereHi={1
represents the four different measurement outcomes. However, these four pictures only
exist ‘locally’. After distributing this information

i=4y—1
@=mQ 2 miiE Q) =% mmig,
there are four different pictures ‘globally’. Hence we can apply the appropriate unitary
corrections; ! : Q — Q in each picture, that i§3:=13; .

The spectrum of a measurement;); is the index se{i};, which for example could
encode locations in physical space. Since for teleportation we assume to work with spa-
tially located patrticles, that is, there are no spatial superpositions, the associativity natural
isomorphism allows to encodgatial associatiorfi.e. proximity) in a qualitative manner.

Scalars, normalization, probabilities and the Born rule. Up to now one might think
that the abstract setting is purely qualitative (whatever that means anyway). But it is not!
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Q Q
(IX"1g") o pg produce EPR-pair
Y
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Y
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mi=ipt unitary correction
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BZ]Q —————HZ10Q

Figure 1:ABSTRACT QUANTUM TELEPORTATION

The scalar€C(I,I) of any monoidal categor¢’ have a commutative composition [19],
that is, amultiplication
If the biproductl @ I exists, we can definesum of scalarg, s’ : I — I ass + s :=
Vio(sHs')oAr: I — 1, and one shows that the above defined multiplication distributes
over this sum and that there is a z&dp: I — 1. Hence we obtain aabelian semiring’
Furthermore, each scalar I — I induces a natural transformation

SA:/\Zlo(s®1A)o)\A:A—>A

for each object4, which allows us to definecalar multiplicationass e f := f o s4 for
f: A — B,wheref oss = sgo f by naturality, that ismorphisms preserve scalar

multiplication
Since we have an inner-product (which, of course, is scalar valued) we can now talk

"That is, a field except that there are no inverses for addition nor for multiplication.
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aboutnormalizatione.g. an elemenp : I — A is normalized iffy)" o ¢» = 1;.2® Besides
the special scalarly and0; there are many others, those which satigfy= s, those of the
form st o s, those which arise from inner-products of normalized elements, and the latter
multiplied with their adjoint, in(FdHilb, ®, @) respectively being and0, the realsR,
the positive real®*, the unit disc inC and the unit intervalo, 1].
Consider now the basic protocol of (non-destructively) measuring a state

(0 (Pi)i=h

I - A =LomisrA.
If we look at one component of the biproduct, i.e., one picture,
, f
L S N SR Sy
S; € C(I, I)

we discover a special scalar of the ‘unit disc type’. One verifies that

i=n

PROB(P;, 1) := SI os; satisfies Z prOB(P;,9) = 11,

=1
hence thes€0, 1] type’ scalarsros(P;, ¢) provide an abstract notion pfobability [4].
Moreover, using our abstract inner-product one verifiesrkas(P;, ) = (¢ | P; o v),
that is, we prove th8orn rule

Mixing classical and quantum uncertainty. This section comprises@oposalfor the
abstract status of density matrices. Having only one page left, we need to be brief. In the
von Neumann formalism density matrices are required for two reasdsdescribe part
of a larger (compound) system, sagtic density matricesand,ii. to describe a system
about which we have incomplete knowledge, spistemic density matriceblence ontic
density matrices arise by considering one component of an element of the name type,
T¢7:1— Ay XAy for @ A7 — A,. In order to produce epistemic density matrices,
consider the situation of a measurement, but we extract the information concerning the
actual outcome from it, that is, we do the converse of distributing classical data,
1
1% 4 Py B g a B RA.

This results again in an element of the name type} : I — (B;1) X A forw : (B,1)* —
A. Metaphorically one could say that tletassical data is entangled with the quantum
data Since our formalism allows both to encode classical data and quantum data there
is no need for a separate density matrix formalism as it is the case for the von Neumann
formalism.

One verifies that the principle o signalling faster than lighstill holds for the name
type in the abstract formalism, that is, operations locally on one component will not alter
the other, provided there is no classical data exchange. But there can be a passage from
ontic to epistemic e.g.

when performing the measuremeént), X 1,4, : 4; K Ay — (H;I) K A,. For epistemic
density matrices this means that the classical data and the quantum data are truly distinct
entities.

DIST ™

187 discussion of normalization of projectors can be found in [5].
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Using Lemma 7.6 of [4] one verifies that, : ;1 — A* is given by
Wi = [s; @ (7} oug)l;

wheres; := m; o ¢ andu; : I ~ I* (a natural transformation which exists by compact
closure). Hencev and hence alsbw™ is determined by a list of orthogonal (pure) states

(77;[ :I— A); and alist of scalaresj : I — A); all of the unit disc type — compare this to

the orthogonal eigenstates of a standard Hilbert space density matrix and the corresponding
eigenvalues which all are of the, 1] type.

So we can pass from pure states I — 1 to density matrices by ‘plugging in an
ancilla’, which either represents classical data (epistemic) or which represents an external
part of the system (ontic). The other concepts that can be derived from basic quantum
mechanics by ‘acting on part of a bigger systemorf-isolated dynamicggeneralized
measurement$16] etc.) can also be defined abstractly, e.g. generalized measurements as

(f)i=n:A—H;A  with ij of;=1u,
=1

while abstract analogous of theorems such as Naimark’s can be proven. Of course, many
things remain to be verified such as abstract analogous of Gleason’s theorem. | might have
something to add to this in my talk)
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