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Many subjects

How many subjects are there in mathematics?

I Linear algebra

I Combinatorics
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I Analysis

I
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AMS Subject Classification (MathSciNet)

00: General
01: History and biography
03: Mathematical logic and foundations
05: Combinatorics
06: Order theory
08: General algebraic systems
11: Number theory
12: Field theory and polynomials
13: Commutative rings and algebras
14: Algebraic geometry
15: Linear and multilinear algebra; matrix theory
16: Associative rings and associative algebras
17: Non-associative rings and non-associative algebras
18: Category theory; homological algebra
19: K-theory
20: Group theory and generalizations
22: Topological groups, Lie groups, and analysis upon them
26: Real functions, including derivatives and integrals
28: Measure and integration
30: Complex functions
31: Potential theory
32: Several complex variables and analytic spaces



33: Special functions
34: Ordinary differential equations
35: Partial differential equations
37: Dynamical systems and ergodic theory
39: Difference equations and functional equations
40: Sequences, series, summability
41: Approximations and expansions
42: Harmonic analysis
43: Abstract harmonic analysis
44: Integral transforms, operational calculus
45: Integral equations
46: Functional analysis
47: Operator theory
49: Calculus of variations and optimal control; optimization
51: Geometry
52: Convex geometry and discrete geometry
53: Differential geometry
54: General topology
55: Algebraic topology
57: Manifolds
58: Global analysis, analysis on manifolds
60: Probability theory, stochastic processes
62: Statistics



65: Numerical analysis
68: Computer science
70: Mechanics
74: Mechanics of deformable solids
76: Fluid mechanics
78: Optics, electromagnetic theory
80: Classical thermodynamics, heat transfer
81: Quantum theory
82: Statistical mechanics, structure of matter
83: Relativity and gravitational theory
85: Astronomy and astrophysics
86: Geophysics
90: Operations research, mathematical programming
91: Game theory, economics, social and behavioral sciences
92: Biology and other natural sciences
93: Systems theory; control
94: Information and communication, circuits
97: Mathematics education



The holy grail

I Have to specialize

I Work is often duplicated

I One subject might benefit from others

The category theorists’ holy grail: the unification of mathematics



What is category theory?

I Foundations

I Relevant foundations

I Framework in which to compare different subjects – study
their similarities and differences

I Need a unifying principle



Birth of category theory

S. Eilenberg and S. Mac Lane, General theory of natural
equivalences, Trans. Amer. Math. Soc., 58 (1945), 231-294

Eilenberg Mac Lane



Categories

Many structures in mathematics come with a corresponding notion
of function between them

I Vector spaces – linear functions

I Graphs – edge-preserving functions

I Topological spaces – continuous functions

I Groups – homomorphisms



Definition
A category A consists of

I A class of objects A,B,C , . . .

I For each pair of objects A, B, a set of morphisms A(A,B).
For f ∈ A(A,B) we write

f : A // B

I For each object A a special morphism

1A : A // A

the identity on A

I For all pairs A
f // B

g // C a composite gf : A // C

Satisfying

I For every f : A // B, 1B f = f = f 1A

I For every A
f // B

g // C
h // D, h(gf ) = (hg)f



Examples

I Vect Objects are vector spaces; morphisms are linear maps

I Gph Objects are graphs; morphisms are edge-preserving
functions

I Top Objects are topological spaces; morphisms are continuous
functions

I Gp Objects are groups; morphisms are homomorphisms

I Set Objects are sets; morphisms are functions



Posets

I A poset (X ,≤) gives a category X

I Objects elements of X

I X(x , y) =

{
{(x , y)} if x ≤ y
∅ ow

I Composition

x y
(x,y) //x

z
(x,z) ##

y

z

(y ,z)
��

E.g. N with “divisibility”, i.e. m ≤ n⇔ m|n



Matrices

I Matrices

I Objects 0, 1, 2, 3, . . .
I Mat(m, n) = {A|A is an n ×m matrix}

m n
A //m

p
BA ##

n

p

B
��



Groups as categories

I A group G gives a category G

I Objects: a single one ∗
I Arrows: one for each element of G , g : ∗ // ∗, i.e.

G(∗, ∗) = G

∗ ∗g //∗

∗
hg ##

∗

∗
h
��



Duality

I The opposite of a category A

I Objects are those of A
I Aop(A,B) = A(B,A)
I Composition is reversed: f g = gf

Every definition has a dual; every theorem has a dual



Isomorphism

f : A // B is an isomorphism if it has an inverse g : B // A, i.e.
gf = 1A and fg = 1B

Write A ∼= B to mean that there is an iso f : A // B, and say A is
isomorphic to B. A and B are “the same”



Products

A, B objects of A
A product of A and B is an object P and morphisms π1, π2

P

B
π2 ��

A

P
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π1
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B
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Products
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A product of A and B is an object P and morphisms π1, π2
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The product may or may not exist

Proposition

If products exist, they are unique up to isomorphism

Proof.

P

A
π1

22

P

B
π2 ,,

R

B
ρ2 ��

A

R

??
ρ1

A

B

ρ1p = π1, ρ2p = π2

π1r = ρ1, π2r = ρ2

ρ1pr = π1r = ρ1, ρ2pr = π2r = ρ2

⇒ pr = 1R
Similarly rp = 1P

Choose one and call it A× B
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Examples of products

I In Vect V ×W is V ⊕W = {(v ,w)|v ∈ V ,w ∈W }
I In Gp G × H = {(g , h)|g ∈ G , h ∈ H} with component-wise

multiplication

I In Set X × Y = {(x , y)|x ∈ X , y ∈ Y }
I In Top X × Y = {(x , y)|x ∈ X , y ∈ Y } with the product

topology

I In Mat the product of m and n is m + n with projections

m + n

n
[0|In] ##

m

m + n

;;
[Im|0]

m

n



I (X ,≤) a poset and X the corresponding category x , y ∈ X

p

y
""

x

p

<< x

y

⇔ p ≤ x & p ≤ y

so p is a lower bound
Universal property

p

y
��

x

p

?? x

y

z

y--

x

z

11 x

y

z p//
z ≤ x & z ≤ y

⇒ z ≤ p

so p is a greatest lower bound (if it exists)
The product of x and y is x ∧ y
E.g., for N with divisibility, the product is g.c.d.



Coproducts

Dual to products

C

B

??j2

A

C
j1 ��

A

B

Y

y1

** Y

y2

55
z //

Choose one and write A + B

Example

Vect is V ⊕W

V ⊕W

W

::
j2

V

V ⊕W

j1
$$

V

W

j1(v) = (v , 0)
j2(w) = (0,w)



Example

Set coproduct is disjoint union

X + Y = X × {1} ∪ Y × {2}

Top coproduct is also disjoint union

Example

Gr coproduct of G and H is the “free product”

G × H = {(g1h1g2h2 . . . gnhn)|gi ∈ G , hi ∈ H}/ ∼

Example

Poset X coproduct is x ∨ y (least upper bound)



Functors
Morphisms of categories

F : A // B
A 7−→ FA

(A
a // A′) 7−→ (FA

Fa // FA′)

such that

I F (1A) = 1FA
I F (a′a) = F (a′)F (a)

Examples

I Forgetful functor U : Vect // Set

I

Mat // Vect
n 7−→ Rn

(m
A // n) 7−→ (Rm TA // Rn)



Examples

(continued)

I Ring
U // Gr

U(R) = group of units (invertible elements)

I Gr
F // Ring

F (G ) = ZG the group ring

Remark
U and F are adjoint functors
Gr(G ,UR) ∼= Ring(ZG ,R)



Eilenberg & Mac Lane

They were studying algebraic topology; homology and homotopy
Hn : Top // Ab (Abelian groups)
πn : Top // Gr

Proposition

Let F : A // B be a functor. If A ∼= A′ then FA ∼= FA′

Proof.
Trivial



More functors

I If (X ,≤), (Y ,≤) are posets, then a functor F : X //Y is the
same as an order-preserving function

I If G , H are groups, then a functor F : G //H is the same as
a group homomorphism

I If G is a group, then a functor F : G // Vect is a
representation of G



Fibonacci

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 · · ·
0 1 1 2 3 5 8 13 21 34 55 89 · · ·

Fact: m|n⇒ Fm|Fn
If N is the natural numbers ordered by divisibility, then

F : N //N

is a functor

Amazing fact: gcd(Fm,Fn) = Fgcd(m,n)

Recall that gcd(m, n) is the categorical product of m and n in N,
so F preserves products



Product-preserving functors

Suppose A and B have (binary) products. Let

A1 × A2

A2

π2 ��

A1

A1 × A2

??π1

A1

A2

F (A1 × A2)

FA2
Fπ2

%%

FA1

F (A1 × A2)

99Fπ1
FA1

FA2

FA1 × FA2

FA2
π′

2
yy

FA1

FA1 × FA2

ee π′
1

FA1

FA2

F (A1 × A2) FA1 × FA2
b //

be products in A and B
F preserves the product A1 × A2 if b is an isomorphism

F (A1 × A2) ∼= FA1 × FA2



Lawvere theories

In 1962 Bill Lawvere introduced algebraic
theories in his thesis, summarized in
“Functorial semantics of algebraic
theories”, Proc. Nat. Acad. Sci., 50
(1963), pp. 869-872

Definition
An algebraic theory is a category T whose objects are (in bijection
with) natural numbers

[0], [1], [2], · · ·

such that [n] ∼= [1]× [1]× · · · × [1] (n times)
A T-algebra is a product preserving functor F : T // Set



Example
Mat is the theory of vector spaces
F : Mat // Set
F [1] = X
F [n] = X × · · ·X = X n

([2]
[1,1] // [1]) �

F // (X 2 + // X )

([1]
[α] // [1]) �

F // (X
α·( ) // X )

If A = [1, 1], B =

[
1 1 0
0 0 1

]
, C =

[
1 0 0
0 1 1

]
then AB = AC

so

[2] [1]
A

//

[3]

[2]

C

��

[3] [2]
B // [2]

[1]

A

��

� F //

X 2 X
+

//

X 3

X 2

(1X )×(+)

��

X 3 X 2(+)×(1X )// X 2

X

+

��



The theory of commutative rings

Objects [0], [1], · · · , [n], · · ·

A morphism [m] // [n] is an n-tuple of polynomials with integer
coefficients in the variables x1, · · · , xm

E.g. [3]
(x1+x2x3, x2

1 +3)
// [2]

Composition is “substitution”

A product-preserving functor is “the same as” a ring

But where are the homomorphisms?



Natural transformations

F ,G : A // B functors, a natural transformation t : F // G
assigns to each object A of A a morphism of B

tA : FA // GA

such that for every a : A // A′ we have

FA′ GA′
tA′

//

FA

FA′

Fa

��

FA GA
tA // GA

GA′

Ga

��

commutes



Natural transformations (continued)
We have arrived at Eilenberg and Mac Lane’s definition of natural

I We have categories A, B, . . .

I There are morphisms between them A // B, called functors

I There are morphisms between functors t : F // G , called
natural transformations

Their example:

I Let V be a finite dimensional vector space

I V ∗ is the dual space, i.e. linear functions φ : V // K

I Dim V ∗ = Dim V so V ∼= V ∗, but there is no natural
isomorphism

I Take dual again V ∗∗. Also have V ∼= V ∗ ∼= V ∗∗

There is a natural map

V // V ∗∗

v � // v̂
v̂(φ) = φ(v)



Homomorphisms

If T is an algebraic theory and F ,G : T // Set two algebras, a
homomorphism from F to G is a natural transformation t : F //G

F [1] = A so F [n] = An

G [1] = B so G [n] = Bn

t[1] = f : A // B
t[n] has to be f n : An // Bn (follows from naturality)

Operations are [n]
ω // [1]

F (ω) : An // A

Naturality gives

A B
f

//

An

A

ω

��

An Bnf n // Bn

B

ω

��

i.e. f is a homomorphism



A theory is a category
This is what is meant in Lawvere’s “Functorial semantics of
algebraic theories”

I An algebraic theory is a category T of a certain type

I An algebra is a functor T // Set with certain properties

I A homomorphism is a natural transformation

This opened the flood gates!
Other theories are categories with other properties

I Categories with finite products give multi-sorted theories

I Categories with finite limits give essentially algebraic theories

I Regular categories give logic with ∃,∨,∧
I Pretoposes give full first-order logic ∃,∀,¬,∧,∨

I a theory is a category with some structure
I a model is a functor T // Set that preserves the relevant

structure
I a morphism is a natural transformation



Conceptual completeness
Michael Makkai Gonzalo Reyes

Theorem (Makkai, Reyes)

Pretoposes are conceptually complete

Means: Any “concept” can be defined by formula in the theory
For this they had to say what a concept was
This is one of the things category theory can do. It can make
precise some intuitive notions. We can now prove theorems that
couldn’t be expressed before (if we’re smart enough)



Grothendieck

Alexandre Grothendieck

I Reformulated algebraic geometry in terms of categories
(1960’s)

I The new set-up allowed him to prove part of the Weil
conjectures

I Deligne proved the general case

I Grothendieck’s framework was essential



Today

I Computer science

I Semantics of programming languages
I Design of programming languages
I Computer verification of programs
I Quantum computing (Peter Selinger)

I Higher category theory

I Joyal – Homotopy theory / Spaces and higher categories are
“the same”

I Baez – Quantum gravity / Nature of empty space
I Makkai – Foundations of mathematics
I Voivodski – Homotopy type theory



International Conference on Category Theory 2006
White Point, NS


