Skolem Relations and Profunctors

Robert Paré

Aveiro, June 2015

Distributivity

Let $\langle K_j \rangle$ be a *J*-family of sets and $\langle \langle A_{j,k} \rangle_{k \in K_j} \rangle_j$ a family of families of sets

$$\prod_{j\in J} \sum_{k\in K_j} A_{j,k} \cong \sum_{s\in \prod K_j} \prod_{j\in J} A_{j,s(j)}$$

Also holds in a topos

- $q: K \longrightarrow J$ is the canonical $\sum_{i \in I} K_i \longrightarrow J$
- Sect(q) is the object of sections of q, i.e. $\prod_{i \in J} K_i$
- $Sect_*(q)$ is the object of pointed sections of q, i.e. $J \times \prod_{j \in J} K_j$
- $Sect_*(q) \longrightarrow K$ is evaluation, $u : Sect_*(q) \longrightarrow Sect(q)$ forgetful

Intersection/Union

• Let $q: K \longrightarrow J$ be a morphism in a topos **E** and $\langle A_k \rangle$ a family of subobjects of A. • $\rightarrowtail K \times A$

Consider

$$\bigcap_{j}\bigcup_{q(k)=j}A_{k}=\bigcup_{s\in Sect(q)}\bigcap_{j}A_{s(j)}$$

Holds in **Set** (and more generally in any topos satisfying *IAC*)

• Internalizes as

Skolem Relations

To prove

$$\bigcap_{j} \bigcup_{q(k)=j} A_k = \bigcup_{s \in Sect(q)} \bigcap_{j} A_{s(j)}$$

- "⊇" easy
- " \subseteq " $a \in \bigcap_j \bigcup_{q(k)=j} A_k$ iff for every j there is a k such that q(k)=j and $a \in A_k$
- The k is not unique so you choose one (if you can) which gives a section $s: J \longrightarrow K$
- If you can't choose, take some or all of them. You get an entire relation $S: J \longrightarrow K$

Definition

A Skolem relation for q is a relation S such that $q_* \circ S = \operatorname{Id}_J$

Distributivity I

Theorem

In any topos we have

$$\bigcap_{j} \bigcup_{q(k)=j} A_k = \bigcup_{S \in Sk(q)} \bigcap_{j \sim sk} A_k$$

or

$$\Omega^{K} \xrightarrow{\bigcup_{q}} \Omega^{J}$$

$$\downarrow^{v^{*}} \downarrow$$

$$\Omega^{Sk_{*}(q)} \xrightarrow{\bigcap_{u}} \Omega^{Sk(q)}$$

Properties of Skolem Relations

Proposition

- (i) If q has a Skolem relation, then q is epi
- (ii) If q is epi, then q* is a Skolem relation
- (iii) Any Skolem relation S is an entire relation
- (iv) For any Skolem relation S we have $S\subseteq q^*$
- (v) Sk(q) is an upclosed subset of q^*
- (vi) Sections of q are minimal elements of Sk(q)

Proposition

is a Skolem relation if and only if

- (1) s_1 is epi
- (2) s_2 is mono

(3)
$$\int_{-\pi}^{s_1} K$$
 commutes

Cutting Down the Size

P is *internally projective* if ()^{*P*}: $\mathbf{E} \longrightarrow \mathbf{E}$ preserves epimorphisms Let $e: P \longrightarrow J$ be an internally projective cover of *J*. A *P-section* of *q* is $\sigma: P \longrightarrow K$ such that

We have a morphism

$$\sigma \longmapsto \operatorname{Im}(\sigma) \Big|_{q}^{K}$$

 $\phi: P\text{-}Sect(q) \longrightarrow Sk(q)$

 ϕ is internally initial

Cutting Down the Size

Theorem

$$\bigcap_{j} \bigcup_{q(k)=j} A_{k} = \bigcup_{\sigma \in P\text{-Sect}(q)} \bigcap_{p \in P} A_{\sigma(p)}$$

$$\Omega^{K} \xrightarrow{\bigcup_{q}} \Omega^{J}$$

$$V^{*} \downarrow \qquad \qquad \Omega^{P\text{-Sect}_{*}(q)} \xrightarrow{\bigcap_{q}} \Omega^{P\text{-Sect}(q)}$$

Corollary

If J is internally projective we have

$$\bigcap_{j} \bigcup_{q(h)=j} A_{K} = \bigcup_{\sigma \in \prod_{a} K} \bigcap_{j} A_{\sigma(j)}$$

Limit/Colimit

We would like a similar formula expressing

$$\lim_{J\in\mathbf{J}} \operatorname{colim}_{K\in\mathbf{K}_J} \Gamma_J K$$

as a colimit of limits, for diagrams

$$\Gamma_J: \mathbf{K}_J \longrightarrow \mathbf{Set}$$

Families of Diagrams

 Γ_J should be functorial in J, so a functor

$$J \rightarrow Diag$$

 $\operatorname{colim}_{K \in \mathbf{K}_J} \Gamma_J K$ should also be functorial in J, so a functor

A good notion of morphism of diagram, which works well for colim is

Families of Diagrams

We can put all the **K**'s together in an *opfibration*

$$Q: \mathbf{K} \longrightarrow \mathbf{J}$$

and then the Γ 's and ϕ fit together to give a single diagram

$$\Gamma: \mathbf{K} \longrightarrow \mathbf{Set}$$

Notes:

- (1) Our discussion leads to split opfibrations, but general opfibrations are better
- (2) We could go further and take homotopy opfibrations, which are exactly the notion which makes colim functorial
- (3) We could in fact take Q to be an arbitrary functor, and take Kan extension instead of colim, but we lose the "family of diagrams" intuition

Limits of Colimits

Let $Q: \mathbf{K} \longrightarrow \mathbf{J}$ be an opfibration and $\Gamma: \mathbf{K} \longrightarrow \mathbf{Set}$ a \mathbf{J} -family of diagrams, $\Gamma_J: \mathbf{K}_J \longrightarrow \mathbf{Set}$ An element of

$$\lim_{J} \operatorname{colim}_{QK=J} \Gamma K$$

is a compatible family of equivalence classes

$$\langle [x_J \in \Gamma K_J]_{\mathbf{K}_J} \rangle_{\mathbf{J}}$$

- For every J we have a K_J such that $QK_J = J$
- Not unique but there is a path of K's in K_J connecting any two choices
- For any $j: J \longrightarrow J'$ there is a $k_j: K_J \longrightarrow j_*K_J$ and a path in $\mathbf{K}_{J'}$ connecting $\Gamma(k_i)(x_J)$ with $x_{J'}$

Profunctors

A profunctor $P: \mathbf{J} \longrightarrow \mathbf{K}$ is a functor $P: \mathbf{J}^{op} \times \mathbf{K} \longrightarrow \mathbf{Set}$ An element of P(J, K) is denoted $J \stackrel{p}{\longrightarrow} K$ Composition:

$$(R \otimes P)(J,L) = \int_{-\infty}^{K} R(K,L) \times P(J,K)$$

An element is an equivalence class

$$[J \xrightarrow{p} K \xrightarrow{r} L]_K$$

- Examples: \bullet $Q^*: \mathbf{J} \longrightarrow \mathbf{K}$ is $Q^*(J, K) = \mathbf{J}(J, QK)$
 - $Q_*: \mathbf{K} \longrightarrow \mathbf{J}$ is $Q_*(K, J) = \mathbf{J}(QK, J)$
 - $\operatorname{Id}_{\mathbf{J}}: \mathbf{J} \longrightarrow \mathbf{J}$ is $\operatorname{Id}_{\mathbf{J}}(J, J') = \mathbf{J}(J, J')$
 - $Q_* \rightarrow Q^*$

Prosections

A prosection for Q is a profunctor $S: \mathbf{J} \longrightarrow \mathbf{K}$ such that $Q_* \otimes S \cong \mathrm{Id}_{\mathbf{J}}$ The isomorphism corresponds to a morphism $\sigma: S \longrightarrow Q^*$

Definition

A prosection for Q is a profunctor $S: \mathbf{J} \longrightarrow \mathbf{K}$ and a morphism $\sigma: S \longrightarrow Q^*$ such that

$$Q_* \otimes S \xrightarrow{Q_* \otimes \sigma} Q_* \otimes Q^* \xrightarrow{\epsilon} \operatorname{Id}_{J}$$

is an isomorphism

A morphism of prosections $(S, \sigma) \longrightarrow (S', \sigma')$ is $t : S \longrightarrow S'$ such that $\sigma' t = \sigma$

The category of prosections is denoted Ps(Q)

Analysis of Prosections

In general an element of $(Q_* \otimes S)(J,J')$ is an equivalence class of pairs

$$[J \xrightarrow{\mathfrak{s}} K, QK \xrightarrow{j} J']_K$$

If Q is an opfibration, $QK \xrightarrow{j} J'$ lifts to $K \xrightarrow{k_j} j_* K$ and $[J \xrightarrow{s} K, QK \xrightarrow{j} J'] = [J \xrightarrow{s} K \xrightarrow{k_j} j_* K, Q(j_*K) == J']$

Proposition

For Q an optibration and $S: \mathbf{J} \longrightarrow \mathbf{K}$ a profunctor, $(Q_* \otimes S)(J, J')$ consists of equivalence classes $[J \xrightarrow{\S} K']_{QK'=J'}$ where the equivalence relation is generated by $S \sim \overline{S}$ if there exists K such that

$$J \xrightarrow{5} K'$$

$$\parallel \qquad \qquad \downarrow_{k}$$

$$J \xrightarrow{\bar{s}} \bar{K'}$$

with
$$Qk = 1_{J'}$$

Analysis of Prosections

For a prosection (S, σ) , $\sigma : S \longrightarrow Q^*$

$$(J \xrightarrow{s} K) \longmapsto (J \xrightarrow{\sigma(s)} QK)$$

Induces $Q_* \otimes S \longrightarrow \operatorname{Id}_J$

$$[J \xrightarrow{s} K']_{QK'=J'} \longmapsto (J \xrightarrow{\sigma(s)} J')$$

Proposition

- (S,σ) is a prosection if and only if for every J there exists $s_J: J \longrightarrow K_J$ such that
- (1) $\sigma(s_J) = 1_J$ (so in particular $QK_J = J$),
- (2) for every $s: J \longrightarrow K$ we have

$$[J \xrightarrow{\sigma s} QK \xrightarrow{s_{QK}} K_{QK}]_{\mathbf{K}_{QK}} = [J \xrightarrow{s} K]_{\mathbf{K}_{QK}}$$

Distributivity II

Theorem

For $Q: \mathbf{K} \longrightarrow \mathbf{J}$ an opfibration and $\Gamma: \mathbf{K} \longrightarrow \mathbf{Set}$ we have

$$\lim_{J \in \mathbf{J}} \operatorname{colim}_{K \in \mathbf{K}_J} \Gamma K \cong \operatorname{colim}_{(S, \sigma) \in \mathbf{Ps}(Q)} \lim_{s \in S(J, K)} \Gamma K$$

ullet We can write $\lim_{s\in S(J,K)}\Gamma K$ as an iterated limit to get an equivalent form of the isomorphism

$$\lim_{J} \underset{QK=J}{\mathsf{colim}} \mathsf{\Gamma} K \cong \underset{(S,\sigma) \in \mathsf{Ps}(Q)}{\mathsf{colim}} \lim_{J} \lim_{s \in S(J,K)} \mathsf{\Gamma} K$$

• If (S, σ) is representable $S = \Phi_*$, for Φ an actual section, then $\lim_{s \in S(J,K)} \cong \Gamma \Phi J$

Distributivity II (continued)

Theorem

$$\begin{array}{l} \mathbf{Ps}_*(Q) \text{ the category of pointed prosections} \\ -\text{ Objects } (S,\sigma,s),S:\mathbf{J} \longrightarrow \mathbf{K},\sigma:S \longrightarrow Q^*,s:J \longrightarrow K,(S,\sigma) \text{ a prosection} \\ -\text{ Morphisms } (t,j,k):(S,\sigma,s) \longrightarrow (S',\sigma',s') \ t:S \longrightarrow S' \text{ such that } \\ \sigma't=\sigma \text{ and} \end{array}$$

$$J' \xrightarrow{j} J$$

$$s' \downarrow \downarrow ts$$

$$K' \xrightarrow{k} K$$

$$U: \mathbf{Ps}_*(Q) \longrightarrow \mathbf{Ps}(Q)$$
 and $V: \mathbf{Ps}_*(Q)^{op} \longrightarrow \mathbf{K}$ forgetful functors

Properties of Prosections

Proposition

- (1) If Q has a prosection, then Q is pseudo epi $(FQ \cong GQ \Rightarrow F \cong G)$
- (2) If (S, σ) is a prosection, then S is total $(\operatorname{colim}_K S(J, K) = 1$ for every J)
- (3) Ps(Q) is closed under connected colimits in $Set^{J^{op} \times K}$

Proof.

- (1) $FQ \cong GQ \Rightarrow F_* \otimes Q_* \cong G_* \otimes Q_*$ $\Rightarrow F_* \otimes Q_* \otimes S \cong G_* \otimes Q_* \otimes S \Rightarrow F_* \cong G_* \Rightarrow F \cong G$
- (2) S is total $\Leftrightarrow T_* \otimes S \cong T_* \ (T : ? \longrightarrow 1)$ $Q_* \otimes S \cong \mathsf{Id}_J \Rightarrow T_* \otimes Q_* \otimes S \cong T_* \otimes \mathsf{Id}_J \Rightarrow T_* \otimes S \cong T_*$
- $(3) \ Q_* \otimes (\mathsf{colim}_\alpha \ \mathcal{S}_\alpha) \cong \mathsf{colim}_\alpha (Q_* \otimes \mathcal{S}_\alpha) \cong \mathsf{colim}_\alpha \ \mathsf{Id}_{\mathbf{J}} \cong \mathsf{Id}_{\mathbf{J}}$

Properties of Prosections (continued)

Proposition

Ps(Q) is accessible

Proof.

is a pseudo pullback

Remark

 $\mathbf{Ps}(Q)$ is models of a colimit-terminal object sketch. It is κ -accessible for any infinite $\kappa > \#\mathbf{K}_J$, all J

Cutting Down the Size

Corollary

 $\mathbf{Ps}(Q)$ has a small initial subcategory

Proof.

If $\mathbf{Ps}(Q)$ is κ -accessible, then the full subcategory of the κ -presentable objects $\mathbf{Ps}_{\kappa}(Q)$ is initial

So we have

Example (Q Discrete Opfibration)

Proposition

If Q is a discrete optibration then any prosection is represented by an actual section

This gives the distributive law

$$\lim_{J} \sum_{QK=J} \Gamma_{J}K \cong \sum_{S \in Sect(Q)} \lim_{J} \Gamma_{J}S(J)$$

If ${\bf J}$ is discrete we recover distributivity of \prod over \sum

Example ($\mathbf{J} = 1$)

A prosection
$$S: \mathbb{1} \longrightarrow \mathbf{K}$$
 of $Q: \mathbf{K} \longrightarrow \mathbb{1}$ is a functor $S: \mathbf{K} \longrightarrow \mathbf{Set}$ such that $\operatorname{colim} S = 1$
So $\operatorname{Ps}(Q) \simeq \operatorname{Conn}^*(\operatorname{Set}^{\mathbf{K}})$

The representables $K^{op} \longrightarrow Conn^*(\mathbf{Set}^K)$ form an initial subcategory, so our distributive law

$$\lim_{J} \operatornamewithlimits{colim}_{QK=J} \Gamma K \cong \operatornamewithlimits{colim}_{S \in \mathbf{Ps}(Q)} \lim_{J} \lim_{s \in S(J,K)} \Gamma K$$

reduces to

$$\begin{array}{c}
\operatorname{colim} \Gamma K \cong \operatorname{colim} \lim_{K \in K} \Gamma(\operatorname{cod} k) \\
\cong \operatorname{colim} \Gamma K \\
K \in K
\end{array}$$

Example (J Discrete)

 $Q: \mathbf{K} \longrightarrow \mathbf{J}$ is just a \mathbf{J} -family of categories \mathbf{K}_J A prosection $S: \mathbf{J} \longrightarrow \mathbf{K}$ of Q is equivalent to a family of functors $S_J: \mathbf{K}_J \longrightarrow \mathbf{Set}$ such that colim $S_J = 1$ $\mathbf{Ps}(Q) \simeq \prod_J Conn^*(\mathbf{Set}^{\mathbf{K}_J})$

Initial Functors

- $\Phi: \mathbf{X} \longrightarrow \mathbf{Y}$ is initial if
- (1) for every $Y \in \mathbf{Y}$ there are $X \in \mathbf{X}$ and $y : \Phi X \longrightarrow Y$
- (2) for any other $y': \Phi X' \longrightarrow Y$ there exists a path

$$X = X_0 \longrightarrow X_1 \longleftarrow X_2 \longrightarrow \cdots \longleftarrow X_n = X'$$

$$\Phi X = \Phi X_0 \longrightarrow \Phi X_1 \longleftarrow \Phi X_2 \longrightarrow \cdots \longleftarrow \Phi X_n = \Phi X'$$

$$\downarrow y \qquad \qquad \downarrow y_0 \qquad \qquad \downarrow y_1 \qquad \qquad \downarrow y_2 \qquad \qquad \downarrow y_n \qquad \downarrow y'$$

$$Y = Y = Y = Y = Y = \cdots = Y = Y$$

- A finite product of initial functors $\prod \Phi_{\alpha} : \mathbf{X}_{\alpha} \longrightarrow \mathbf{Y}_{\alpha}$ is again initial
- Does not hold for infinite products
- Say that $\Phi: \mathbf{X} \longrightarrow \mathbf{Y}$ is *very initial* if for every y and y' there exists a path of length 2 joining them
- An infinite product of very initial functors is very initial

Example (J Discrete)

 $Q: \mathbf{K} \longrightarrow \mathbf{J}$ is just a \mathbf{J} -family of categories \mathbf{K}_J A prosection $S: \mathbf{J} \longrightarrow \mathbf{K}$ of Q is equivalent to a family of functors $S_J: \mathbf{K}_J \longrightarrow \mathbf{Set}$ such that $\operatorname{colim} S_J = 1$

 $\mathsf{Ps}(Q) \simeq \prod_J \mathit{Conn}^*(\mathsf{Set}^{\mathsf{K}_J})$

If **J** is finite, then families of representables are initial in Ps(Q)

$$\prod_{J} \mathbf{K}_{J}^{op} \longrightarrow \prod_{J} \mathit{Conn}^{*}(\mathbf{Set}^{\mathbf{K}_{J}})$$

so our distributive law becomes

$$\prod_{J} \underset{K \in \mathbf{K}_{J}}{\mathsf{colim}} \Gamma_{J} K \cong \underset{\langle K_{J} \rangle \in \prod \mathbf{K}_{J}}{\mathsf{Kolim}} \prod_{J} \Gamma_{J} K_{J}$$

For example, if **J** is 1 + 1

$$(\operatornamewithlimits{\mathsf{colim}}_{\mathsf{K}_1}\mathsf{\Gamma}_1\mathsf{K}_1)\times(\operatornamewithlimits{\mathsf{colim}}_{\mathsf{K}_2\in\mathsf{K}_2}\mathsf{\Gamma}_2\mathsf{K}_2)\cong\operatornamewithlimits{\mathsf{colim}}_{(\mathsf{K}_1,\mathsf{K}_2)}(\mathsf{\Gamma}_1\mathsf{K}_1\times\mathsf{\Gamma}_2\mathsf{K}_2)$$

$$\begin{array}{c|c}
\mathbf{Set}^{\mathbf{K}_{1}} \times \mathbf{Set}^{\mathbf{K}_{2}} \xrightarrow{\operatorname{colim} \times \operatorname{colim}} & \mathbf{Set} \times \mathbf{Set} \\
 & \xrightarrow{\pi_{1}^{*} \times \pi_{2}^{*}} & & & & & \\
\mathbf{Set}^{\mathbf{K}_{1} \times \mathbf{K}_{2}} \times \mathbf{Set}^{\mathbf{K}_{1} \times \mathbf{K}_{2}} & & & & & \\
\mathbf{Set}^{\mathbf{K}_{1} \times \mathbf{K}_{2}} \times \mathbf{Set}^{\mathbf{K}_{1} \times \mathbf{K}_{2}} & & & & & \\
\end{array}$$

Example

If the categories \mathbf{K}_J have the property that every span can be completed to a commutative square

then the representables $\mathbf{K}_{J}^{op} \longrightarrow Conn^{*}(\mathbf{Set}^{\mathbf{K}_{J}})$ are very initial so we get a distributive law

$$\prod_{J} \underset{K \in \mathbf{K}_{J}}{\mathsf{colim}} \, \Gamma_{J} K \cong \underset{\langle K_{J} \rangle \in \prod}{\mathsf{colim}} \, \prod_{J} \Gamma_{J} K_{J}$$

If the \mathbf{K}_J are discrete we recover distributivity of \prod over \sum again

Example

For general \mathbf{K}_J and \mathbf{J} infinite, the representables are no longer initial We can take finite nonempty connected colimits of representables

Let $\mathbb G$ be a finite, nonempty, connected graph For any diagram $D:\mathbb G \longrightarrow \mathbf K$, let

$$H_D = \operatorname*{colim}_{v \in \mathbb{G}} \mathbf{K}(D(v), -)$$

We have colim $H_D \cong 1$

Let $Diag_0\mathbf{K}$ be the category of such diagrams $D:\mathbb{G}\longrightarrow\mathbf{K}$

Proposition

 $H_{(\)}: Diag_0 \mathbf{K} \longrightarrow Conn^*(\mathbf{Set}^{\mathbf{K}})$ is very initial

This gives the distributive law

$$\prod_{J} \underset{K \in \mathbf{K}_{J}}{\mathsf{colim}} \, \Gamma_{J} K \cong \underset{\langle D_{J} \rangle}{\mathsf{colim}} \, \prod_{J} \underset{v \in \mathbb{G}_{J}}{\mathsf{lim}} \, \Gamma_{J} D_{J} v$$