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Distributivity
Let (Kj) be a J-family of sets and ((A; x)kek;); a family of families of sets
I > Aw= > 1140
J€J keK; se[lK; jed

Also holds in a topos

2
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E/Sect.(q) o E/Sect(q) et

e g: K—Jis the canonical } ., K;—J

e Sect(q) is the object of sections of g, i.e. s Ki

e Sect,(q) is the object of pointed sections of g, i.e. J x [[;c, K;
e Sect,(q) —= K is evaluation, u : Sect.(q) — Sect(q) forgetful



Intersection/Union

e Let g : K—=J be a morphism in a topos E and (Ay) a family of
subobjects of A, e >—=>K x A

Consider
N U A= U NAv

J aq(k)= s€Sect(q) J

Holds in Set (and more generally in any topos satisfying IAC)
e Internalizes as

Ug

QSect* (q) QSec't(q) USect(q)

u

K <“— Sect,(q) — Sect(q)

. jelJ—=2=K J—>K
e N
J J



Skolem Relations

To prove

NuUa= U mAso

J oq(k)=j s€Sect(q
e “D" easy

e “C" a € ();Uqk); Ax iff for every j there is a k such that g(k) = j
and a € Ax

e The k is not unique so you choose one (if you can) which gives a
section s: J—K

e If you can't choose, take some or all of them. You get an entire
relation S : J—e—=K

Definition
A Skolem relation for q is a relation S such that g, oS =1Id;



Distributivity |

Theorem
In any topos we have

NU A= U Na
i q(k)=j SeSk(q) sk

or
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Sk(g)—— Q7K Ski(q) ——— €uxk
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1—— Q) Jx K x Sk(g)>—> J x K x QI*K
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Properties of Skolem Relations

Proposition

(i) If q has a Skolem relation, then q is epi

(ii) If q is epi, then q* is a Skolem relation

(i) Any Skolem relation S is an entire relation
(iv) For any Skolem relation S we have S C g*
(v) Sk(q) is an upclosed subset of q*

(vi) Sections of q are minimal elements of Sk(q)

Proposition

S
Sj/ \52 is a Skolem relation if and only if
J K

(1) s1 is epi
(2) s, is mono

)
(3) SV \f commutes
J-TK



Cutting Down the Size

P is internally projective if ( )P : E—=E preserves epimorphisms
Let e : P—=J be an internally projective cover of J. A P-section of q is
0 : P— K such that

We have a morphism

¢ P-Sect(q) — Sk(q)

¢ is internally initial



Cutting Down the Size

Theorem
NUA= U NAw
J q(k)=j oc€P-Sect(q) pEP
Uq
[\ QU N o V)
\ﬂi\
v* Q
QP-Secti(q) o QP—Sect(q)/(_;“(q)
Corollary

If J is internally projective we have

M U Ac= U (1A

J q(h)= UGH K Jj



Limit/Colimit

We would like a similar formula expressing

lim coliml ;K
Jes KeK,y

as a colimit of limits, for diagrams

I,: K;,—Set



Families of Diagrams

I, should be functorial in J, so a functor
J— Diag
colimkek, ;K should also be functorial in J, so a functor

colim

Diag ——— Set

A good notion of morphism of diagram, which works well for colim is

Ki—2 > K

\/



Families of Diagrams

We can put all the K's together in an opfibration
Q:K—1J

and then the 's and ¢ fit together to give a single diagram

[: K—Set
Notes:
(1) Our discussion leads to split opfibrations, but general opfibrations are
better

(2) We could go further and take homotopy opfibrations, which are
exactly the notion which makes colim functorial

(3) We could in fact take Q to be an arbitrary functor, and take Kan
extension instead of colim, but we lose the “family of diagrams” intuition



Limits of Colimits

Let Q : K—=J be an opfibration and I : K— Set a J-family of
diagrams, ', : K; — Set
An element of

lim colimlK

J QK=

is a compatible family of equivalence classes

(Ixs € TKJ]k,)s

e For every J we have a K such that QK; = J

o Not unique but there is a path of K's in K connecting any two choices
o For any j: J—J thereis a kj : K;—j, K, and a path in K
connecting (k;)(x,) with x,



Profunctors

A profunctor P : J—e—=K is a functor P : J°? x K— Set

An element of P(J, K) is denoted J—e— K
Composition:

K
(R® P)(J,L) :/ R(K,L) x P(J,K)
An element is an equivalence class
[J—5—>K—£—>L]K

Examples: ¢ Q*:J—e—=K is Q*(J,K)=1J

o Q.:K——=1J is Q.K,J)=J(QK,J)
o ldy:J——=J is Idy(J, ") =Jd(J,T)
[ ]

Q. Q"



Prosections

A prosection for Q is a profunctor S : J—e—= K such that Q, ® S = Id,
The isomorphism corresponds to a morphism ¢ : S — Q*

Definition

A prosection for Q is a profunctor S : J—e—=K and a morphism
o:S— Q" such that

QR0
_—

Q®S Q. ® Q" —— Id,

is an isomorphism

A morphism of prosections (S,0) —=(S’,0") is t : S—= 5’ such that
o't=o

The category of prosections is denoted Ps(Q)



Analysis of Prosections

In general an element of (Q. ® S)(J,J') is an equivalence class of pairs
[~ K, QK 1= J]x

If Q is an opfibration, QK—>J’ lifts to K—>1*K and
[J——=K, QK—>J’]*[J—0—>K—>J*K QU K)=J]

Proposition
For Q an opfibration and S : J —e—=K a profunctor, (Q. ® S)(J,J")

consists of equivalence classes [J—a— K| gk where the equivalence
relation is generated by s ~ 5 if there exists k such that

J—e= K’

| )

J?K’

with Qk = 1,



Analysis of Prosections

For a prosection (S,0), 0 : S— Q*

o(s)

(J—+=K)Z=(J —= QK)

Induces Q, ® S — Id,

[J—i%K/]QK/:J/ — (J&-J/)

Proposition

(S,0) is a prosection if and only if for every J there exists s; : J—e—= K}
such that

(1) o(s;) = 1, (so in particular QK; = J),

(2) for every s : J—e— K we have

[Ji) QK:?;KQK]KQK = [J4§_> Klkox



Distributivity

Theorem
For Q : K—=1J an opfibration and I : K—Set we have

lim colimlFK = colim lim K
JeJ KeK; (5,0)EPS(Q) s€S(J,K)

e We can write limgcsy,k) 'K as an iterated limit to get an equivalent
form of the isomorphism

lim colimlTK = colim lim |lim TK
J QK=J (S,0)ePs(Q) J seS(J,K)

o If (S,0) is representable S = ., for ® an actual section, then
Iimses(“() =2loJ



Distributivity Il (continued)

Theorem

K colimg J

Set |

~o

V*l Set

Set

SetPs (A7 . getPs(Q)” mee)
-

imy

Ps..(Q) the category of pointed prosections
— Objects (S,0,5),S:J—=K,0:S—Q*,s: J—e=K,(5,0) a
prosection
— Morphisms (t,j, k) : (S,0,5)—=(S',0’,s') t : S— 5’ such that
o't =0 and

Jy oy

s/\% $ts

K,?K

U:Ps,(Q)—=Ps(Q) and V :Ps,(Q)% —K forgetful functors



Properties of Prosections

Proposition

(1) If Q has a prosection, then Q is pseudo epi (FQ =2 GQ = F = G)
(2) If (S, 0) is a prosection, then S is total (colimk S(J, K) =1 for every
J)

(3) Ps(Q) is closed under connected colimits in Set’”

Proof.
1)FR2GR=F.®Q ~G o Q.
= FLRQRSEGCRARJIS=F 26, =FXG6

xK

(2) Sistotal & T, @S =T, (T:?7—1)
ReS=I)=>T.0QeS=ET.ld=T.05=T,

(3) Qi ® (colimg, Sy) =2 colimy (Qy ® S,) =2 colim,, Idy 22 1d,



Properties of Prosections (continued)

Proposition
Ps(Q) is accessible
Proof.
Ps(Q) — Set’” K
i = J{Lanuopxo)
1——> Set’™!
rJ(i,i)‘l

is a pseudo pullback O
Remark

Ps(Q) is models of a colimit-terminal object sketch. It is k-accessible for
any infinite k > #K,, all J



Cutting Down the Size

Corollary
Ps(Q) has a small initial subcategory

Proof.
If Ps(Q) is x-accessible, then the full subcategory of the k-presentable
objects Ps,(Q) is initial

[

So we have
colimg

J

o

v Set

SetX Set

o opCOlimps . (Q)
SetPs (@ T SetPs- (@7
my



Example (Q Discrete Opfibration)

Proposition

If Q is a discrete opfibration then any prosection is represented by an
actual section

This gives the distributive law

lim domKk= Y lim T,5(J)

QK=J SeSect(Q)

If J is discrete we recover distributivity of ] over >



Example (J = 1)

A prosection S : 1 —e—>K of @ : K—1 is a functor S : K—Set such
that colimS =1
So Ps(Q) ~ Conn*(Set")

The representables K — Conn*(SetK) form an initial subcategory, so
our distributive law

limcolimlFK = colim I|m im K
J QK=J SePs(Q) J seS(J,K)

reduces to
colimTK = colim lim T(cod k)
KeK KeK keK/K

=~ colimlK
KeK



Example (J Discrete)

Q : K—=1J is just a J-family of categories K

A prosection S : J—e—=K of @ is equivalent to a family of functors
S, : K;—=Set such that colimS; =1

Ps(Q) ~ [], Conn*(Set™)



Initial Functors

e & : X—=Y is initial if
(1) for every Y € Y thereare X e X and y : dX —Y
(2) for any other y’ : ®X’ — Y there exists a path

X=X X1 X Xp—=X’

DX — Xy > OXg < DXy —> --- < OX, — dX’

T T

o A finite product of initial functors [ ®,, : X, —> Y is again initial
e Does not hold for infinite products

e Say that ® : X—=Y is very initial if for every y and y’ there exists a
path of length 2 joining them

e An infinite product of very initial functors is very initial




Example (J Discrete)

Q : K—=1J is just a J-family of categories K

A prosection S : J—e—=K of Q is equivalent to a family of functors
S, : K;—Set such that colimS; =1

Ps(Q) ~ [], Conn*(Set™)

If J is finite, then families of representables are initial in Ps(Q)
H KP — H Conn*(Set®”)
J J

so our distributive law becomes

liml K = I MK
Hsetimrobe= ot 110



For example, if Jis 14+ 1

lim Il K limlMKs) = colim (M Ky x MaK:
(f(?el'f(? 1 1)><(%>€l22 2K2) ﬁglgl(l 1 %X M2Kz)

colim x colim

Set®t x Setk? "M, get x Set
\X
T X7 Set

colim
SetX1 XKz  GetKixKe . gegKixK:
X



Example

If the categories K, have the property that every span can be completed
to a commutative square

then the representables K9 — Conn*(SetKJ) are very initial so we get a
distributive law

Hcoelllzr) MK = K<J:o€|.mKJ H MK,

If the K are discrete we recover distributivity of [] over > again



Example

For general K, and J infinite, the representables are no longer initial
We can take finite nonempty connected colimits of representables

Let G be a finite, nonempty, connected graph
For any diagram D : G—=K, let

Hp = colimK(D —
p = colimK(D(v), -)
We have colim Hp =1

Let DiagoK be the category of such diagrams D : G—K
Proposition

H(y : DiagoK — Conn*(SetX) is very initial

This gives the distributive law

[[colimr K = colim [ lim F,D,v
- KEK, (D)) 7 vety



