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Introduction

>

Basic tenet: The right framework for two-dimensional
category theory is that of double categories
The traditional approach was via:
» 2-categories (like Cat)
» bicategories (like Prof)
(Weak) double categories are a lot like bicategories

» good because much of the well-developed theory of
bicategories can be easily adapted to double categories
> interesting when the theories differ
» the Yoneda lemma is an instance of this
The Yoneda lemma is the cornerstone of category theory
categorical universal algebra
categorical logic
sheaf theory
representability and adjointness

vV vy VvVyy

The further development of double category theory depends
on understanding the Yoneda lemma in this context



» Not a priori clear what representables should be

>

>

Where do they take their values?
What kind of “functor” are they?

» These questions lead to the double category Set

>

>

>

sets, functions and spans
this is the double category version of the category of sets
the most basic double category

> Representables are lax functors into Set
» hence the double category Lax(A°P, Set)

vV vy vy VY VY

a presheaf double category
understand its properties
horizontal and vertical arrows
composition (not trivial)
completeness

etc.



(Weak) Double Categories

>

Objects

» Two kinds of arrows (horizontal and vertical)
> Cells that tie them together

A—f.B
Aol
v

v

(also denoted o : v—=w)

Horizontal composition of arrows and cells give category
structures

Vertical composition gives “weak categories”, i.e. composition
is associative and unitary up to coherent special isomorphism
(like for bicategories)

Vertical composition of cells is as associative and unitary as
the structural isomorphisms allow

Interchange holds



The Basic Example: Set

» Objects are sets

» Horizontal arrows are functions

» Vertical arrows are spans

» Cells are commutative diagrams
A—B
S—T
C—D

» Vertical composition uses pullback — it is associative and
unitary up to coherent special isomorphism



A Related Example: V-Set

> V a ®-category with coproducts

v

Objects are sets

v

Horizontal arrows are functions

v

Vertical arrows A - B are A x B matrices of objects of V

v

Cells are matrices of V morphisms

v

Vertical composition is matrix multiplication

When V = Set, X, we get Set
When V = 2, A, we get sets with relations as vertical arrows



An Important Example: Cat

v

Objects are small categories

Horizontal arrows are functors

v

v

Vertical arrows A -= B are profunctors, i.e. A°? x B—Set
Cells

v

F

—=C

>

t Q

B
RN <—o—

——=D

G

are natural transformations

t:P(— —)— Q(F—, G-)



Three General Constructions: V, H, Q

» For B a bicategory, VB is B made into a double category
vertically, i.e. horizontal arrows are identities

» For C a 2-category, HC is C made into a double category
horizontally, i.e. vertical arrows are identities

> For C a 2-category, QC is Ehresmann’s double category of
“quintets”. A general cell is

cC——=C



Lax Functors F : A —B

A A FA—= FA
Vl v Fvl Fa %FV’
Y $ a _
A—A FA— FA
F Ff

» Preserve horizontal compositions and identities

» Provide comparison special cells for vertical composition and
identities

d(v,v): Fv-Fv= F(v-v), ¢(A):idgp = F(ida)

» Satisfy naturality and coherence conditions, like for lax
morphisms of bicategories

There are also oplax, normal, strong, and strict double functors



Examples

» F:VB—VB is a (lax) morphism of bicategories
» F:HC—HCis a 2-functor
» Cat Set

» Ob: Cat — Set is lax

» Disc: Set — Cat is strong

» 7o : Cat —> Set is oplax normal
» 1— A is a vertical monad

» 1—— Set is a small category

» 1—V-Set is a small V-category



The Main Example: A(—, A) : A® — Set

A(X,A)={f: X—A}
X—t-A
A(V, A) — V$ o $IdA
The span projections are domain and codomain

» Horizontal functoriality is by composition
» Vertical comparisons

h(w,v) : A(w,A) ® A(v,A) = A(w - v, A)

XA

V$ @ $'dA X*f>A

Yy - A va$ Ba $idA

s g A
A



Natural Transformations of Lax Functors

t:F—G

v

For every A, tA: FA— GA (horizontal)

For every v : A = A,

v

FA—— GA

Fv\% tv $Gv

FA— GA
tA

v

Horizontally natural

v

Vertically functorial



Examples

» For lax 1 — Set, we get functors
» For lax 1 —V-Set, we get V-functors

» For VB—= VB, we get lax transformations which are
identities on objects

» For HIC — HC(’, we get 2-natural transformations

» Every horizontal f : A—= A’ gives a natural transformation

A(=,f): A(—, A) —A(—, A

XA = X2 Atfopn
X >~ A XAt pn
v$ I3 iidA — v$ $ ids $idA/
Y —A Y —A—> A

y y f



The Yoneda Lemma

Theorem

For a lax functor F : A°P — Set and an object A of A, there is a
bijection between natural transformations t : A(—, A)— F and
elements x € FA given by x = t(A)(1a).

Corollary

Every natural transformation t : A(—, A)— A(—, A’) is of the
form A(—, f) for a unique f : A—=A’.



“Application”

The theory of adjoints for double categories was set out in
[Grandis-Paré, Adjoint for Double Categories, Cahiers (2004)]. The
left adjoint is typically oplax and the right adjoint lax. It is
expressed in terms of conjoints in a strict double category Doub.

Example:
7o -1 Disc 4 Ob

Theorem
For F : A—=B oplax and U : B— A lax, there is a bijection
between adjunctions F 4 U and natural isomorphisms

B(F—,—)—A(-,U-)

of lax functors A°P x B — Set.



Vertical Structure of Lax(A,B)

For F and G lax functors, A—=B, a module [Cockett, Koslowski,
Seely, Wood — Modules, TAC 2003] m: F - G is given by the

following data.
> For every vertical arrow v : A = A in A a vertical arrow

mv: FA - GA
» For every cell a a cell ma

A—Tf.cC FA-F. Fc

$ $W R mv$ . imw

A C GA— GC
Gf

7



Modules (continued)

» For every pair of vertical arrows v: A = Aand v: A - A,
left and right actions
F
GA

FA— FA

-
{ iﬂ

» Horizontal functoriality

5.
-eo—

satisfying

> Naturality of A and p
» Left and right unit laws

» Left, right and middle associativity laws



Examples

» For 1— Set, modules are profunctors

» For F: A—B lax, idg : F - F is given by

FA

idp(v) = FV$

FA

» (Main Example) For v: A - Ain A

A(—,v): A(—,A) - A(—,A)

X
A(z,v)=1¢ =z

v

Di<eo—)N

_—
§

|
v



Modulations
The cells of Lax(A, B) are called modulations following [CKSW]

F—t>F

d

G—>¢G
> For every vertical v: A = A we are given

FA-2- F'A

mv$ v %m’v

GA—G'A
sA
satisfying
» Horizontal naturality
» Equivariance
Example: A cell o of A produces a modulation A(—, «)



The Yoneda Lemma |l

Theorem

Let m: F - G be a module in Lax(A°, Set) andv:A < Aa
vertical arrow of A. Then there is a bijection between modulations

A(—,A)—F
s im
A(—,A)—~G

and elements r € m(v) given by r = p(v)(1,).



Corollary

For F : AP — Set lax, an element r € F(v) is uniquely
determined by a modulation

Corollary
Forv:A -« AandVv' : A = A’ in A, every modulation

A(_aA) A(_>’4I)
A(—,v)$ " %A(,V’)
A(_a ,Z\) A(—, ,Z\)/

is of the form A(—, «) for a unique cell o : v—V'.



Application: Tabulators

A tabulator for a vertical arrow v : A - A in a double category is
an object T and a cell
A

v

T

/!
N

|

with universal properties:
(T1) For every cell

g
\

there is a unique horizontal arrow x : X — T such that 7x = ¢

X

Di<—e—2



Tabulators: 2-Dimensional Property

(T2) For every commutative tetrahedron of cells

X——A

Xt

X——=A

there is a unique cell £ such that

1~
1T
X A

gives the tetrahedron in the “obvious” way.



Tabulators in Lax(A°, Set)

Let m: F -« G be a module. If it has a tabulator, T, we can use
Yoneda to discover what it is. By Yoneda, elements of TA are in
bijection with natural transformations t : A(—, A)— T which by
T1 are in bijection with modulations

A(—,A)—F
IdA(f,A)i o lm

v y

A=, A)— G

and as Idy(_ a) = A(—,ida), such p are in bijection with elements
r € m(ida) by Yoneda Il. So we define

T(A) = m(ida)



By Yoneda Il, elements of T(v) are in bijection with modulations

A(—,A)—T
A(—,v)$ w iidr
A(—,A)—T

which correspond to commutative tetrahedra

A(—, A) 7F
A(_% >\ im
A(—,A)—~G

and this tells us that we must have
T(V) = (GV & m(idA)) X m(v) (m(ld;\) & FV)

It is now straightforward to check that with these definitions, T is
indeed the tabulator.



Lax Double Categories
Also called fc-multicategories, virtual double categories,
multicategories with several objects
Like double categories, except vertical arrows don't compose.
Instead multicells are given

By
wl \
v
B Ao

denoted
ol Wgy...,Wo, W] —>V



Lax Double Categories (continued)

There are identities 1, : v— v and multicomposition: for
compatible
Bi i Xi1y .oy Xif —>= W

we are given

a(B, .- P1) 1 X11, -y Xkl —>V

which is associative and unitary in the appropriate sense.
The composite w, ..., w; exists (or is representable) if there is a
vertical arrow w and a special multicell

L Wgyoo oy W1 = W

such that for every multicell o as above there exists a unique
@ : w—>v such that & = a.

The composite wy, - ... wy is strongly representable if ¢ has a
stronger universal property for a's whose domain is a string
containing the w's as a substring.



Multimodulations
A multimodulation

Gk

V- V V| .
» For each path Ay—e—>A; —e—> ... —e> Ay, we are given
(Vs o ooyve) i mgvk e ooomvi —=m(vg ... vy)

satisfying
» Horizontal naturality
» Left, right, inner equivariance (k — 1 conditions)



The Multivariate Yoneda Lemma

Theorem
Form: F - G in Lax(A° Set) and vi,...,vi a path in A, we
have a bijection between multimodulations

A(—, v), ..., A(—,vi)—m

and elements
rem(vg-...-v)

Corollary
The composite A(—, vk) - ... - A(—, v1) is represented by
A(— ve-...- ).

Theorem

All composites (k-fold) are representable in Lax(A°P, Set).
Remark: Don't know if they are strongly representable. Don't
think so, but we conjecture that they are if A satisfies a certain
factorization of cells condition.



The Yoneda Embedding

Y : A— Lax(A°, Set)
Y(A) = A(—,A)
Y(v) =A(=v)

» Y is a morphism of lax double categories

v

It preserves identities and composition (up to iso)

It is full on horizontal arrows

v

v

It is full on multicells

It is dense

v



Density

For F : A°’P — Set construct the double category of elements of F
EI(F)
» Objects are (A, x) with x € FA
» Horizontal arrows f : (A, x) —(A’,x’) are f : A— A’ such
that F(f)(x') = x
» Vertical arrows (v, r) : (A, x) = (A/X)arev:A -« Aand
r € F(v) such that p = x and n = x
» Cells are cells o of A such that F(a)(r') =r
There is a strict double functor P : EI(F) — A

Theorem

F=limYP
=



Example: A Horizontally Discrete

Let A = VA for a category A.

» For a lax functor F : VAP — Set, EI(F) is also horizontally
discrete, i.e. VB. Thus F corresponds to an arbitrary
category over A, B— A (Bénabou)

» The representable A(—, A) corresponds to A:1—A

» A natural transformation t : F— G corresponds to a functor
over A,

B .¢C

\/

A



Example (continued)

» A module m: F -« G corresponds to a “profunctor over A”

B—%e~C B——A
\:/ ie. Pi;ild;\

a cell in Cat

» The representable A(—, a) corresponds to
1 A
iy

1 A

» Modulations are commutative prisms
» Thus Lax(VA° Set) ~ Cat /A

H

—_—
A/



