The Double Theory of Monads (with apologies to Lack & Street)

Robert Paré

for Francisco "Quico" Marmolejo ¡Feliz Cumpleaños!

> Mexico November 18, 2021

Double categories

We'll be talking about double categories A:

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow^{v} & \alpha & \downarrow^{w} \\
C & \xrightarrow{g} & D
\end{array}$$

- **Example 1**: $\square A$ commutative squares in any category
- **Example 2**: $(\square A)^{co}$ horizontal part is **A**, vertical part is A^{op}
- **Example 3**: \mathbb{R} el sets, functions, relations, implications
 - All thin
 - Category object in Cat

E.g.
$$\square A: A^3 \Longrightarrow A^2 \Longleftrightarrow A$$

Kleisli

$$T = (T, \eta, \mu)$$
 monad on ${\bf A}$

 $\mathbb{K}l(T)$:

- Thin
- Horizontal 2-category $\mathcal{H}or\mathbb{K}\mathbb{I}(T)$ can have non identity 2-cells

Companions

 $f: A \longrightarrow B$ has a *companion* $v: A \longrightarrow B$ if there are cells α and β such that

$$A = A \xrightarrow{f} B \qquad A \xrightarrow{f} B$$

$$A \xrightarrow{f} B = B \qquad A \xrightarrow{f} B$$

$$A \xrightarrow{f} B = B \qquad A \xrightarrow{f} B$$

$$A \xrightarrow{f} B = A \xrightarrow{f} B$$

When they exist, they are unique up to globular iso – make a choice f_*

Companions in $\mathbb{K}l(T)$

Proposition

Every horizontal arrow f in $\mathbb{K}l(T)$ has a companion $f_* = [\eta B \cdot f]$

$$(A \xrightarrow{f} B \xrightarrow{\eta B} TB)$$

Conjoints

The (vertical) dual notion is conjoint: w is a conjoint of f if

$$A \xrightarrow{f} B = B \qquad A \xrightarrow{f} B$$

$$\| \alpha \downarrow^{w} \beta \| = \| id_{f} \|$$

$$A = A \xrightarrow{f} B$$

$$A \xrightarrow{f} B$$

$$B = B$$

$$\downarrow^{w} \beta \parallel \qquad A \xrightarrow{f} B$$

$$A \xrightarrow{f} B = W \downarrow 1_{w} \downarrow^{w}$$

$$A \xrightarrow{f} A \xrightarrow{f} A$$

$$A \xrightarrow{f} A \xrightarrow{f} A$$

Write $w = f^*$ when it exists

Conjoints in $\mathbb{K}l(T)$

Proposition

f has a conjoint in $\mathbb{K}l(T)$ iff Tf is invertible

$$f^* = [(Tf)^{-1}\eta B]$$

$$B \xrightarrow{\eta B} TB \xrightarrow{(Tf)^{-1}} TA$$

Tabulators

• $v: A \longrightarrow B$ has a *tabulator* if there is a universal span

Write

• Globally id: $A_0 \longrightarrow A_1$ has a right adjoint

Tabulators in $\mathbb{K}l(T)$

Proposition

A vertical arrow $[v]: A \longrightarrow B$ in $\mathbb{K}l(T)$ has a tabulator iff the pullback

exists in A

Proof.

 $X \xrightarrow{x_0} A \qquad X \xrightarrow{x_0} A \qquad X \xrightarrow{x_0} A$ $\parallel \xi \downarrow [v] \longleftrightarrow \eta x \downarrow = \downarrow v \longleftrightarrow x_1 \downarrow = \downarrow v$ $X \xrightarrow{x_1} B \qquad TX \xrightarrow{TX_1} TB \qquad B \xrightarrow{\eta B} TB$

Representability of vertical arrows

Assume that A has functorial companions

A is *small* if there is $\epsilon A : PA \longrightarrow A$ such that for every $v : X \longrightarrow A$ there exists a unique $\widehat{v} : X \longrightarrow PA$ such that $\epsilon A \bullet (\widehat{v})_* = v$

• Equivalently, the functor

$$(Hor \mathbb{A})^{op} \longrightarrow Set$$

$$X \longmapsto \{v : X \longrightarrow A\}$$

is representable

- A has representable vertical arrows if every A is small
- Equivalently

()*: Hor
$$\mathbb{A} \longrightarrow \text{Vert}\mathbb{A}$$

has a right adjoint

Proposition

 $\mathbb{K}l(T)$ has representable vertical arrows, with P = T

Horizontalizers

 A T-algebra a: TA → A gives a uniform way of turning a vertical arrow into a horizontal one

$$X \\ [f] \downarrow \longrightarrow (X \xrightarrow{f} TA \xrightarrow{s} A)$$

$$A$$

• A an object of \mathbb{A} (with companions). A horizontalizer on A is an assignment

$$\begin{array}{c} X \\ \downarrow \\ \downarrow \\ A \end{array} \longrightarrow h(v) \colon X \longrightarrow A$$

- (1) $h(id_A) = 1_X$
- $(2) h(v \bullet f_*) = h(v)f$
- (3) $h(v \bullet w) = h(h(v)_* \bullet w)$

Horizontalizers in $\mathbb{K}l(T)$

Theorem

The category* of horizontalizers in $\mathbb{K}l(T)$ is equivalent to the category of Eilenberg-Moore algebras for T

A morphism of horizontalizers is $f: A \longrightarrow B$ such that $h(f_ \bullet v) = f h(v)$

Distributive laws

• $T=(T,\eta,\mu)$, $S=(S,\kappa,\nu)$ monads on **A**

A distributive law, $\lambda \colon TS \longrightarrow ST$, of T over S gives a double category $\mathbb{K}l(\lambda)$

Theorem

 $\lambda \colon TS \longrightarrow ST$ a natural transformation. $\mathbb{K}l(\lambda)$ is a double category iff λ is a distributive law

Companions in $\mathbb{K}l(\lambda)$

• $f: A \longrightarrow B$ in **A** gives a companion pair

$$f_{\circ}: A \longrightarrow B \longleftrightarrow A \xrightarrow{f} B \xrightarrow{\kappa B} SB$$

$$f_*: A \longrightarrow B \longleftrightarrow A \xrightarrow{f} B \xrightarrow{\eta B} TB$$

Proposition

$$\{h\}: A \longrightarrow B \text{ and } [v]: A \longrightarrow B \text{ are companions iff }$$

commutes

Zappa-Szép

• (S, λ, T) satisfies the Zappa-Szép condition if

is a pullback

• $ZS \Rightarrow$ companion pairs are of the form (f_{\circ}, f_{*})

Tabulators in $\mathbb{K}l(\lambda)$

Proposition

If the pullback

exists in **A** and is preserved by S, then $[v]: A \longrightarrow B$ has a tabulator, namely P

Horizontalizers in $\mathbb{K}l(\lambda)$

• A Kleisli algebra for λ is a: $TA \longrightarrow SA$ such that

A Kleisli algebra (A, a) gives a "horizontalizer" on A

$$X \xrightarrow{[v]} A \qquad \rightsquigarrow \qquad X \xrightarrow{\{av\}} A$$

$$X \xrightarrow{v} TA \qquad X \xrightarrow{v} TA \xrightarrow{a} SA$$

- (1) $h(id_A) = 1_A$
- (2') $h(v \bullet f_*) = h(v) \circ f_\circ$
- (3') ???

Doublads

Definition: A (horizontal) doublad on a double category A consists of

- (1) A horizontal monad $\mathbb S$ on $\mathbb A$
- (2) A vertical monad T on A
- (3) A horizontal transformation $\lambda: TS \longrightarrow ST$
- (4) A double modification

$$\begin{array}{c|c}
S & \xrightarrow{1_S} & S \\
 & \downarrow & \lambda_0 & \downarrow S\eta \\
\hline
TS & \xrightarrow{\lambda} & ST
\end{array}$$

(5) A double modification

Doublads (cont.)

satisfying:

(6)

(7)

$$TSS \stackrel{\lambda 5}{\longrightarrow} STS \stackrel{5\lambda}{\longrightarrow} SST$$

$$\downarrow^{\nu_1}$$

$$TS \xrightarrow{\lambda} ST$$

Doublads (cont.)

(8)

$$TS \xrightarrow{1_{TS}} TS \xrightarrow{\lambda} ST$$

$$T\eta S \downarrow T\lambda_0 \downarrow TS\eta \lambda \eta \downarrow ST\eta \qquad TS \xrightarrow{\lambda} ST$$

$$T^2S \xrightarrow{T\lambda} TST \xrightarrow{\lambda} ST^2 \qquad = id_{TS} \downarrow id_{\lambda} \downarrow id_{ST}$$

$$\mu S \downarrow \lambda_2 \qquad \downarrow S\mu \qquad TS \xrightarrow{\lambda} ST$$

$$TS \xrightarrow{\lambda} ST$$

(9)

$$TS \xrightarrow{\lambda} ST \xrightarrow{1_{ST}} ST$$

$$\uparrow^{TS} \downarrow \qquad \eta \lambda \qquad \downarrow^{\eta ST} \lambda_0 T \qquad \downarrow^{S\eta T} \qquad TS \xrightarrow{\lambda} ST$$

$$T^2S \xrightarrow{T\lambda} TST \xrightarrow{\lambda} ST^2 \qquad = \qquad \stackrel{\text{id}_{TS}}{\downarrow} \qquad \stackrel{\text{id}_{\lambda}}{\downarrow} \qquad \stackrel{\text{id}_{ST}}{\downarrow}$$

$$\downarrow^{S} \downarrow \qquad \lambda_2 \qquad \downarrow^{S\mu} \qquad TS \xrightarrow{\lambda} ST$$

$$TS \xrightarrow{\lambda} ST$$

Doublads (cont.)

(10)

An ordinary distributive law gives a doublad on $\square \mathbf{A}$

A mixed distributive law (of a comonad over a monad) is one on $(\square A)^{co}$

Theorem

Doublads $(\mathbb{T}, \lambda, \mathbb{S})$ are in bijection with extensions of \mathbb{T} to vertical monads $\widetilde{\mathbb{T}}$ on $\mathbb{K}l(\mathbb{S})$

Define $\mathbb{K}l(\mathbb{T},\lambda,\mathbb{S})$ to be $\mathbb{K}l(\widetilde{\mathbb{T}})$

- An object of $\mathbb{K}l(\widetilde{\mathbb{T}})$ is just an object of \mathbb{A}
- A horizontal morphism $[f]: A \longrightarrow B$ is given by a horizontal morphism $f: A \longrightarrow SB$ in \mathbb{A}
- A vertical morphism $[v]: A \longrightarrow C$ is given by a vertical morphism $v: A \longrightarrow TC$
- A cell

• Satisfying some "obvious" conditions

To be continued ...

¡Gracias!