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The Problem

For two diagrams
| J
r\ »/q>
A

what is the most general kind of morphism '~~® which will
produce a morphism

[imlM—limo 7
— —

Trivial answer: A morphism lim [ — LCD.

We want something more syntactic! E.g.
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§ AT
A B
Then we get
hpifo =

hgop>
kg1p2
kg1p3

hgops
hp1fy

pifo = gop2
p1fi = gop3
g1p2 81P3



Example

A —p—_ Bo pifo = gop2
o} VA VRN pifi = gops
A TP Br B2 81p2 81p3
¥ N
A — B
Thus we get
hpifo = hgop2
= kgip2
= keips
= hgop3
= hpif

So there is a unique p such that pf = hp;.



Problems

» Different schemes (number of arrows, placement, equations)
may give the same p

> |t might be difficult to compose such schemes
On the positive side

» It is equational so for any functor F : A— B for which the
coequalizer and pushout below exist we get an induced
morphism g

Fp3
FAgy — FBy

FfOJ/ $Ff1 Fp2 Fgo/ \ifgl

FA; F—p> FB; FB>
1

fi NS

D
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The Problem (Refined)

For two diagrams in A
| J
™N o
A
what is the most general kind of morphism I ~ ® which will
produce a morphism
I|_m> FI— I|_m> Fo

for every F : A— B for which the Ii_m>’s exist?

» It should be natural in F (in a way to be specified)



First Solution

Take F to be the Yoneda embedding Y : A —=Set?”. Then we
have the bijections

m Y[ — m Yo
Ii_mHA(—,FI)% |i_m>JA(—,¢J)
(A(=,TT)— li_m>_/ A(—,®J))

(x € |i_m>J A(T1, ),

An element of Ii_rpﬂ A(T'/,®J) is an equivalence class of morphisms

r—2~oJ],

where a ~ 2’ iff there is a zigzag path of diagrams

r—2 - oy,
H | i
) Tﬂ- ¢Jk+]_

joining a to 4.



Theorem
Suppose we are given

> For each I, a J; and a morphism Tl —~ &,

> ForeachI’—=1 a path of J's and a’s joining
r’ L 2oy

to

ry — N/

then for every F we get a morphism lim FT — lim F®. Two such
choices, (a; : T1 —=®J;) and (a} : [/ — ®J}), induce the same
morphisms “ﬂ FI — “ﬂ F®, iff for each | there is a path joining

M0 toTI—1=bJ.



Example Again

Ao
fo) |fi

Al —_—
p1

fo P
Ag = A1 > By

| o

Ao——~Bo

_ >

8 BO &
0 1
~ '\

B>

f 2
Ag = A & B

H 0

Ay —2 By

| e

Ap— B

| e

Ao—7 = bBo



Canonization
Recalling our first idea of

| ’; J
N
A

where we get for every I, a J; = FI, and a morphism
a; = ¢l : T1— ®F/. Naturality of ¢ gives a one-step path

rr i 2L oF

H chFi

I_I/ T q)FI,

In the general case / ~ J; is not a functor. There can be several

J;, and for i : I’ — 1 we don’t get a morphism J; —= J; but only
a path. This is a kind of “relation between categories”. They are

called profunctors (distributors, bimodules, modules, relators).



Profunctors

» A profunctor P : A—e—=B is a functor P : A°°? x B— Set
» Every functor F : A— B gives two profunctors

F.:A—e>B, F,=B(F—,—):A% x B—>Set
F*:B—e>A, F*=B(—,F—):B% x A—>Set
F. - F*

» Composition A t.B 2. C

B
Q® P(A, C):/ Q(B, C) x P(A, B)
={[A—3>-B—5-Cls} = {y ®5x}

> A S >B- 4> C~ A—%5>B s Cif there is

A—%~B—+-C yRx=y'b® x
H b =y @ bx
A—e>B —e>C =y ®x

X y



For example, given functors

r o]

| —A<—1
we get an easily computed profunctor ®* @[, : | —e—J

O* @, (1,J) = A(T1,dJ).

Proposition

A compatible family (x; € Iiinﬂ A(I'1,d))), determines a
subprofunctor P C ®* ® ', with the property that for every F and
every a € P(l,J) we have

Fri—2- Foy
inji |, Vinis

Ii_m>FF—>|i_m>Fd>

for the morphism induced by (x;).

Proof.
P(l,J)={a:TI—®J|[a] = [x]}.



Total Profunctors

Definition
P : A—e—=B is total if for every A,

lim, P(A, B) = 1.

Let T : A—1 be the unique functor. Then P is total iff
T.0 P—>T,.

Proposition

(1) Total profunctors are closed under composition.

(2) For any functor F : A—=B, F, is total. (In particularlda is
total.)

(3) If P and P ® Q are total then Q is total.

(4) Total profunctors are closed under connected colimits and
quotients.

(5) F* is total iff F is final.

(6) For 1<=—K—2-1, 0, ® T* is total iff ¥ is final.



Profunctors over A

Definition
ForT:1—A and ¢ : J—A, a profunctor from I to ® (or a
profunctor from | to J over A) is

\WZ/
r (o]
A

where P is a profunctor | —e—1J and
m: P—A(l—,®—) = ®* @I, is a natural transformation.

Profunctors over A compose in the “obvious” way:
(Q¢)®(P,m)=(Q® P,y @)
(¥ @ m)(y ® x) = (Yy)(mx).



Theorem
Let

P
| — o> J
N
A
be a profunctor over A with P total. Then for every F: A—B

for which lim FT and ILng Fo exist, there is a unique morphism
lim Frr - lim FI'— lim F® such that for every x € P(1,J) we have

Fri— 9 rey

inji | Vinis

If (Q,v) : ®—V is another total profunctor over A, we have

lim F(4 ) = (lim F4é)(lim Fr).



Saturation

Definition
P > Q : | —e—=1 is saturated if for every x € Q(/, J) for which
Jjx € P(1,J') for some j: J—J', it follows that x € P(/, J).

» P is saturated in Q iff for every I, P(I,—) == Q(/,—) is
complemented in Set”’.

» Every P > @ has a saturation P——-Q.

Theorem

Let (P, ) and (P',x") be two total profunctors  —e—=®. Then
they induce the same family lim FI — lim F® iff the images of
7 P—o*®l, and ' : PP—=®* @I, have the same saturation.



Naturality

Definition
A family of morphisms bg : li

lim FI— I|_m> F® is natural if for
every G we have

. bgr .
@)\LGFF% ||_rn> fFCD

Glim Fo

G Il—m> Fr Gbr —

Theorem

A total profunctor over A induces a natural family as above. Every
natural family comes from a total saturated profunctor C ®* Q..
In fact there is a bijection between natural families and saturated
total C d* R I,.



Cohesive Families

As remarked by Bénabou already in the 70's, a category over |
K
M
[

corresponds to a lax normal functor | — Prof where an object / is
sent to K|, the fibre over /I, and a morphism j : [ — [’ to the
profunctor P; : K; —e—= K/ given by the formula

Pi(K,K') = {K -5~ K'|Ak = i}

He also points out that interesting sub bicategories of Prof should
produce interesting conditions on categories over /.

Definition
N : K—=1is a cohesive family of categories if each P; is total.



Cohesive Families (Continued)

In elementary terms, for every K in K and every morphism

i : AK —= 1", there exists a morphism k : K —%~ K’ such that
i = Ak and any two such liftings are connected by a path over /.

Kok sk

AK I

1

Bénabou says such A are called "homotopy opfibrations”.

Proposition

(1) Opfibrations are homotopy opfibrations

(2) Homotopy opfibrations are stable under pullback

(3) Homotopy opfibrations are closed under composition



Cohesive Families of Diagrams
Definition
A cohesive family of diagrams in A is a span

r

K A
A
|
with A a homotopy opfibration.
Let [} = I'|K,.
Theorem

Ii_m> I} extends to a.unique functor I|_m> [y : 1—=A such that for all
k:K—K' overi:l—1I

rK rk rK’

I'anl/ \Lian/

limlF ) ———Iliml
— lmf; I



Kan Extensions
Ii_m> () :1—=Ais the left Kan extension and cohesiveness says it is
fibrewise. So a more functorial version of the preceding theorem is:
Theorem
A . K—1 is a homotopy opfibration iff for every pullback diagram

L-%K
| I
J—1

F

and every cocomplete A, the canonical morphism

AL S AK
Lany \L YA i’ Lanp
AJ = AI
is an isomorphism.

If we take J =1, F <> | €1, we get (Lanpl')] = lim ).



The Comprehensive Factorization

Set Cat
2 > Set
Relations > Profunctors
Everywhere Defined < Total
Single Valued < ?
Functions > Functors

Recall the comprehensive factorization on Cat (Street & Walters
'73). Every functor F factors as

A

F .B
o
C

with G final and H a discrete fibration. So the final functors are
“epi-like” and the discrete fibrations are “mono-like”.



The Comprehensive Factorization

Set Cat
2 & Set
Relations ~ Profunctors
Everywhere Defined < Total
Single Valued <> Discrete Valued
Functions Functors

Recall the comprehensive factorization on Cat (Street & Walters
'79). Every functor F factors as

A

F .B
o
C

with G final and H a discrete fibration. So the final functors are
“epi-like” and the discrete fibrations are “mono-like”.



Discrete Valued Profunctors

Definition
P is discrete valued if it is of the form P = G, ® F* for some

A<LC*G> B with F a discrete fibration.

Theorem
P is discrete valued iff for every A, P(A, —) is multirepresentable
(Diers), i.e. a sum of representables. In fact

P(A,—)= > B(GC,-).

FC=A

Corollary
The factorization P = G, ® F* is unique up to isomorphism.



Mealy Morphisms

A small category is a monad in Span, which is a lax functor

1—Span.
A lax transformation

A
1 /@:\Span
I

corresponds to a Mealy morphism (machine)
» For every A, B we are given a set S(A, B) of states
» Arrows of A are the input alphabet
» Arrows of B are the output alphabet

» Action

A/ a A s B o A/ s? B/ o(s,a)

B



Mealy Profunctors

A Mealy morphism determines a profunctor P : A—e—=B

P(AB)= > B(B,B)

seS(A,B’)
Theorem
P is a Mealy profunctor iff P is discrete valued.

Theorem
P is representable iff it is total and discrete valued.



