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Abstract. We prove that many important weak double categories can be ‘repre-
sented’ by spans, using the basic higher limit of the theory: the tabulator. Dually,
representations by cospans via cotabulators are also frequent.

Introduction

Strict double categories were introduced and studied by C. Ehresmann [Eh1, Eh2], the
weak notion in our series [GP1 - GP4]. The strict case extends the more usual (if histor-
ically subsequent) notion of 2-category, while the weak one extends bicategories, priorly
established by Bénabou [Be]. The extension is made clear in Section 3.

This note is about weak double categories and the (horizontal) tabulator of a vertical
arrow. The latter is the ‘basic’ higher limit of the theory; in fact the main result of [GP1]
says that a weak double category has all (horizontal) double limits if and only if it has:
double products, double equalisers and tabulators.

We prove here that the existence of tabulators in a weak double category A produces,
under suitable hypotheses, a lax functor S : A→ Span(C) with values in the weak double
category of spans over the category C of horizontal arrows of A (Theorem 6). We say
that A is span representable when this functor S is horizontally faithful.

Many important weak double categories can be represented in this sense, by spans or
- dually - by cospans, via cotabulators.

Outline. We begin by a brief review of basic notions on weak double categories, from [GP1,
GP2], including the weak double categories of spans and cospans, and the (co)tabulator
of a vertical arrow.

Sections 6 and 7 give the main definitions and results recalled above, about (co)span
representability. Various weak (or strict) double categories are examined in Sections 8 -
12, proving that many of them are both span and cospan representable. Yet the weak
double category SpanSet, which is trivially span representable, is not cospan representable
(Section 8), and CospSet behaves in a dual way.

Finally, some common patterns in the previous proofs of representability are analysed
in Section 13.
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2000 Mathematics Subject Classification: 18D05,18A30.
Key words and phrases: double category, tabulator, span.

1



2

1. Definition

A (strict) double category A consists of the following structure.

(a) A set ObA of objects of A.

(b) Horizontal morphisms f : X → X ′ between the previous objects; they form the cate-
gory Hor0A of the objects and horizontal maps of A, with composition written as gf and
identities 1X : X → X.

(c) Vertical morphisms u : X •−→ Y (often denoted by a dot-marked arrow) between the
same objects; they form the category Ver0A of the objects and vertical maps of A, with
composition written as v•u (or u ⊗ v, in diagrammatic order) and identities written as
eX : X •−→ X or 1•X .

(d) Double cells a : (u f
g v) with a boundary formed of two vertical arrows u, v and two

horizontal arrows f, g

X
f //

•u

��

X ′

•v

��
a

Y g
// Y ′

(1)

Writing a : (X X
g v) or a : (e 1

g v) we mean that f = 1X and u = eX . The cell a is
also written as a : u→ v (with respect to its horizontal domain and codomain, which are
vertical arrows) or as a : f •−→ g (with respect to its vertical domain and codomain, which
are horizontal arrows).

We refer now to the following diagrams of cells, where the first is called a consistent
matrix (ac

b
d) of cells

X
f //

•u

��

X ′
f ′ //

•v

��

X ′′

•w

��
a b X 1 //

•u

��

X

•u

��

X
f //

•e

��

X ′

•e

��
Y g //

•u′

��

Y ′ g′ //

•v′

��

Y ′′

•w′

��

1u ef

c d Y
1
// Y X

f
// X ′

Z
h
// Z ′

h′
// Z ′′

(2)

(e) Cells have a horizontal composition, consistent with the horizontal composition of

arrows and written as (a | b) : (u f ′f
g′g w), or a|b; this composition gives the category Hor1A

of vertical arrows and cells a : u→ v of A, with identities 1u : (u 1
1 u).

(f) Cells have also a vertical composition, consistent with the vertical composition of arrows
and written as

(
a
c

)
: (u′•u f

h v
′
•v), or a

c
, or a⊗c; this composition gives the category Ver1A

of horizontal arrows and cells a : f •−→ g of A, with identities ef = 1•f : (e ff e).
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(g) The two compositions satisfy the interchange laws (for binary and zeroary composi-
tions), which means that we have, in diagram (2):(

a | b
c | d

)
=

(
a

c

∣∣∣ b
d

)
,

(
1u
1u′

)
= 1u′•u, (ef | ef ′) = ef ′f , 1eX = e1X . (3)

The first condition says that a consistent matrix (ac
b
d) has a precise pasting; the last

says that an object X has an identity cell �X = 1eX = e1X . The expressions (a | f ′) and
(f | b) will stand for (a | ef ′) and (ef | b), when this makes sense.

A is said to be flat if every double cell a : (u f
g v) is determined by its boundary -

namely the arrows f, g, u, v. A standard example is the double category RelSet of sets,
mappings and relations, recalled below in Section 8(c).

2. Hints at weak double categories

More generally, in a weak double category A the horizontal composition behaves categori-
cally (and we still have ordinary categories Hor0A and Hor1A), while the composition of
vertical arrows is categorical up to comparison cells:

- for a vertical arrow u : X •−→ Y we have a left unitor and a right unitor

λu : eX ⊗ u→ u, ρu : u⊗ eY → u,

- for three consecutive vertical arrows u : X •−→ Y , v : Y •−→ Z and w : Z •−→ T we have
an associator

κ(u, v, w) : u⊗ (v ⊗ w)→ (u⊗ v)⊗ w.

Interchange holds strictly, as above. The comparison cells are special (which means
that their horizontal arrows are identities) and horizontally invertible. Moreover they are
assumed to be natural and coherent, in a sense made precise in [GP1], Section 7; after
stating naturality with respect to double cells, the coherence axioms are similar to those
of bicategories.

A is said to be unitary if the unitors are identities, so that the vertical identities
behave as strict units - a constraint which in concrete cases can often be easily met. The
terminology of the strict case is extended to the present one, as far as possible.

A lax (double) functor F : X→ A between weak double categories amounts to assign-
ing:

(a) two functors Hor0F and Hor1F , consistent with domain and codomain

Hor1X
Hor1F //

Dom
��

Hor1A
Dom
��

Hor1X
Hor1F //

Cod
��

Hor1A
Cod
��

Hor0X Hor0F
// Hor0A Hor0X Hor0F

// Hor0A

(4)
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(b) for any object X in X, a special cell, the identity comparison of F

F (X) : eFX → FeX : FX •−→ FX,

(c) for any vertical composite u⊗ v : X •−→ Y •−→ Z in X, a special cell, the composition
comparison of F

F (u, v) : Fu⊗ Fv → F (u⊗ v) : FX •−→ FZ.

Again, these comparisons must satisfy axioms of naturality and coherence with the
comparisons of X and A [GP2].

3. Dualities

A weak double category has a horizontal opposite Ah (reversing the horizontal direction)
and a vertical opposite Av (reversing the vertical direction); a strict structure also has a
transpose At (interchanging the horizontal and vertical issues).

The prefix ‘co’, as in colimit, coequaliser or colax double functor, refers to horizontal
duality, the main one. Let us note that a weak double category whose horizontal arrows
are identities is the same as a bicategory written in vertical, i.e. with arrows and weak com-
position in the vertical direction and strict composition in the horizontal one. This is why
the oplax functors of bicategories correspond here to colax double functors. (Transposing
the theory of double categories, as is done in some papers, would avoid this conflict of
terminology, but would produce other conflicts at a more basic level: for instance, colimits
in Set would become ‘op-limits’ in RelSet and SpanSet.)

4. Spans and cospans

For a category C with (a fixed choice of) pullbacks there is a weak double category
Span(C) of spans over C, which will play here an important role.

Objects, horizontal arrows and their composition come from C, so that Hor0(SpanC) =
C.

A vertical arrow u : X •−→ Y is a span u = (u′, u′′), i.e. a diagram X ← U → Y in
C, or equivalently a functor u : ∨ → C defined on the formal-span category • ← • → •.
A vertical identity is a pair eX = (1X , 1X). A cell σ : (u f

g v) is a natural transformation
u→ v of such functors and amounts to the left commutative diagram below

X
f // X ′ X // X ′ // X ′′

U
mσ //

u′

OO

u′′
��

V

v′

OO

v′′
��

U
mσ //

u′

OO

u′′
��

V
mτ //

v′

OO

v′′
��

W

w′

OO

w′′
��

Y g
// Y ′ Y // Y ′ // Y ′′

(5)
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We say that the cell σ is represented by its middle arrowmσ : U → V , which determines
it together with the boundary (the present structure is not flat).

The horizontal composition σ|τ of σ with a second cell τ : v → w is a composi-
tion of natural transformations, as in the right diagram above; it gives the category
Hor1(SpanC) = Cat(∨,C).

The vertical composition u⊗ v of spans is computed by (chosen) pullbacks in C

X Y Z

U

ff 88

V

ff 88

W = U×Y V.

W

ff 88 (6)

This is extended to double cells, in the obvious way. For the sake of simplicity we make
Span(C) unitary, by adopting the ‘unit constraint’ for pullbacks: the chosen pullback of
an identity along any morphism is an identity. The associator κ is determined by the
universal property of pullbacks.

Dually, for a category C with (a fixed choice of) pushouts there is a unitary weak
double category Cosp(C) of cospans over C, that is horizontally dual to Span(Cop). We
have now

Hor0(CospC) = C, Hor1(CospC) = Cat(∧,C), (7)

where ∧ = ∨op is the formal-cospan category •→ • ← •.
A vertical arrow u = (u′, u′′) : ∧→ C is now a cospan, i.e. a diagram X → U ← Y in

C, and a cell σ : u→ v is a natural transformation of such functors. Their vertical com-
position is computed with pushouts in C; again, we generally follow the ‘unit constraint’
for pushouts.

5. Tabulators

The (horizontal) tabulator of a vertical arrow u : X •−→ Y in the weak double category A
is an object T = >u equipped with a double cell tu : eT → u

T
p //

•eT

��

X
•u

��

H
f //

•e

��

T
p //

•e

��

X
•u

��
tu ef tu = h,

T q
// Y H

f
// T q

// Y

(8)

such that the pair (T, tu : eT → u) is a universal arrow from the functor e : Hor0A→ Hor1A
to the object u of Hor1A. Explicitly, this means that for every object H and every cell
h : eH → u there is a unique horizontal map f : H → T such that (ef | tu) = h, as in the
right diagram above.

(In [GP2] we also considered a higher dimensional universal property, which was
dropped in later papers and is not used here.) We say that A has tabulators if all of
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them exist, or equivalently if the degeneracy functor e : Hor0A → Hor1A has a right
adjoint

> : Hor1A→ Hor0A, e a >. (9)

In this situation one can try to represent A as a weak double category of spans, as we
shall see below.

Dually A has cotabulators if the degeneracy functor has a left adjoint

⊥ : Hor1A→ Hor0A, ⊥ a e, (10)

so that every vertical arrow u : X •−→ Y has a cotabulator-object ⊥u, equipped with two
horizontal morphisms i : X → ⊥u, j : Y → ⊥u and a universal cell ι : (u i

j e). This may
allow representing A as a weak double category of cospans.

For a category C with pullbacks, the tabulator in Span(C) of a span u = (u′, u′′) =
(X ← U → Y ) is its central object U , with projections u′, u′′ and the obvious cell
tu : eU → u. The cotabulator is the pushout of the span in C, provided it exists. All this
cannot be formulated within the bicategory Span(C) (vertically embedded in Span(C)
as specified in Section 3).

6. Theorem and Definition (Span representation)

We suppose that:

(a) the weak double category A has tabulators,

(b) the ordinary category C = Hor0(A) of objects and horizontal arrows has pullbacks.

There is then a canonical lax functor, which is trivial in degree zero

S : A→ Span(C), Hor0(S) = idC, (11)

and takes a vertical arrow u : X •−→ Y of A to the span Su = (p, q) : X •−→ Y determined
by the tabulator >u and its projections p : >u→ X, q : >u→ Y .

The lax functor S will be called the span representation of A.
Note. Related results can be found in Niefield [Ni], for weak double categories with vertical
companions and adjoints.

Proof. As in Section 5 we write tu : (e pq u) the universal cell of the tabulator >u.
The action of S on a cell a of A is described by the following diagram

X
f // X ′

•v

��

X
f //

•u

��

X ′

•v

��
a >u >a //

p
99

q %%

>v

p′
77

q′ ''

tv

Y g
// Y ′

Y g
// Y ′

(12)
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where the cell Sa : Su → Sv (a morphism of spans) is represented by the coherent mor-
phism >a : >u→ >v. The latter is determined by the universal property of the universal
cell tv of the tabulator >v

(>a | tv) = (tu | a) (p′.>a = fp, q′.>a = gq), (13)

>u >a //

•e

��

>v p′ //

•e

��

X ′

•v

��

>u p //

•e

��

X
f //

•e

��

X ′

•v

��
e tv = tu a

>u
>a
// >v

q′
// Y ′ >u q

// Y g
// Y ′

(In the composition (>a | tv) we write >a for e>a, as already warned at the end of
Section 1.)

To define the laxity comparisons, an object X of A gives a special cell S(X) : eX →
S(eX) represented by the morphism

kX : X → >eX , (kX | teX) = �X . (14)

For a vertical composite w = u ⊗ v : X •−→ Y •−→ Z, the comparison S(u, v) : Su ⊗
Sv → Sw is represented by the morphism kuv defined below, where P = >u×Y>v is a
pullback and σ = λ(eP )−1 = ρ(eP )−1

kuv : P → >w, (kuv | tw) =

(
σ | r | tu

s | tv

)
, (15)

P

•e

��

P
r //

•e

��

>u p //

•e
��

X

•u

��

er tu
P

kuv //

•e
��

>w //

•e
��

X
•w
��

>u q
**

e tw = σ P
r 44

s **
•e

��

= Y

•v

��

P
kuv
// >w // Z >v p′

44

•e
��es tv

P P s
// >v

q′
// Z

(Note that one cannot apply interchange to (r | tu)⊗ (s | tv).) Finally we have to verify
the coherence conditions of the comparisons of S (see [GP2], Section 2.1), and we only
check axiom (iii) for the right unitor.

For a vertical map u : X •−→ Y and w = u ⊗ eY we have to verify that the following
diagram of morphisms of C commutes

>u×Y Y

(1,kY )
��

>u

>u×Y>eY kue
// >w

>(ρu)
OO

(16)
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where the pullback >u×Y Y is realised as >u, by the unit constraint, and the morphism
>(ρu) is defined by: (>(ρu) | tu) = (tw | ρu).

Equivalently, by applying the (cancellable) universal cell tu and the isocell ρ = ρ(e>u),
we show that

(ρ | (1, kY ) | kue | >(ρu) | tu) = (ρ | tu).

In fact we have

(ρ | (1, kY ) | kue | >(ρu) | tu) = (ρ | (1, kY ) | kue | tw | ρu)

=

(
ρ | (1, kY ) |σ | r | tu

s | te
| ρu

)
=

(
ρ | ρ−1 | (1, kY ) | r | tu

(1, kY ) | s | te
| ρu

)
=

(
�>u | tu
eq | ek | te

| ρu
)

=

(
�>u | tu
eq |�Y

| ρu
)

=

(
tu
eq
| ρu

)
= (ρ(e>u) | tu).

(17)

The fourth, fifth and seventh terms of these computations are represented below, with
P = >u×Y>eY and k = kY

>u (1,k) //

•e

��

P r //

•e

��

>u p //

•e
��

X

•u

��

X

•u

��

e er tu
>u q

**>u (1,k) //

•e

��

P
r 44

s **
•e

��

= Y

•eY

��

ρu

>eY p′

44

•
e
��

e es te

>u
(1,k)

// P s
// >eY

q′
// Y Y

>u

•e

��

>u p //

•e
��

X

•u

��

X

•u

��

�>u tu >u p //

•e
��

X
•u
��

X

•u

��

>u q
**

tu

>u
q ''

•e

��

= Y

•eY

��

ρu >u q //

•e
��

Y
•e
��

ρu

Y k //

•e
��

>eY p′

55

•
e
��

eq

te >u q
// Y Y

>u q
//

eq

Y
k
//

ek

>eY
q′
// Y Y

7. Span and cospan representability

Let A be a weak double category.

(a) We say that A is (horizontally) span representable if:
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- it has tabulators,
- the ordinary category C = Hor0(A) has pullbacks,
- the span-representation lax functor S : A→ Span(C) of (11) is horizontally faithful.

The last condition means that the ordinary functors Hor0S and Hor1S are faithful.
This is trivially true for Hor0(S) = idC, and also for Hor1S when A is flat.

(b) By horizontal duality, if A has cotabulators and C = Hor0(A) has pushouts we form
a colax functor of cospan representation

C : A→ Cosp(C), Hor0(C) = idC, (18)

that takes a vertical arrow u : X •−→ Y of A to the cospan Cu = (i, j) : X •−→ Y formed
by the cotabulator ⊥u and its ‘injections’ i : A→ ⊥u, j : Y → ⊥u.

In this situation we say that A is cospan representable if this colax functor is horizon-
tally faithful.

8. Some basic cases

(a) For a category C with pullbacks, the weak double category Span(C) is span repre-
sentable, in a strict sense: the functor S : Span(C) → Span(C) is an isomorphism, and
even the identity for the natural choice of the tabulator of a span, namely its central object.
Dually, for every category C with pushouts, Cosp(C) is ‘strictly’ cospan representable.

(b) On the other hand it is easy to see that SpanSet is not cospan representable, while
CospSet is not span representable. For the first fact we consider a morphism of spans
σ : u → u represented in the left diagram below, where the objects are cardinal sets
(0 = ∅, 1 = {0}, 2 = {0, 1})

1 // 1 0 //

��

0

��
2 mσ //

OO

��

2

OO

��

2 mσ // 2

1 // 1 0 //

OO

0

OO (19)

All the arrows to 1 are determined but the mapping mσ : 2 → 2 is arbitrary; the
cotabulator pushout is ⊥u = 1 and ⊥σ does not determine σ.

The second counterexample is shown in the right diagram above, where again mσ : 2→
2 is arbitrary, the tabulator pullback is >u = 0 and >σ does not detect σ.

Similar counterexamples can be given for any category C with finite limits (or colimits)
and some object with at least two endomorphisms.

(c) The (strict) double category A = RelSet of sets, mappings and relations [GP1] has
Hor0(A) = Set, relations for vertical arrows and (flat) double cells given by an inequality
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in the ordered category of relations

X
f //

•u

��

X ′

•v

��
6 gu 6 vf.

Y g
// Y ′

(20)

Tabulators and cotabulators exist: >u ⊂ X×Y is the relation itself, as a subset of
X×Y , while ⊥u is the pushout of the span Su = (X ← >u → Y ), or of any span
representing the relation.

Since RelSet is flat it is automatically span and cospan representable. The same holds
replacing Set with any regular category with pushouts.

In the examples below we examine other strict or weak double categories, referring to
their definition in [GP1, GP2], briefly reviewed here.

9. Representing profunctors

The weak double category Cat of categories, functors and profunctors was introduced in
[GP1], Section 3.1. Objects are small categories, a horizontal arrow is a functor and a
vertical arrow is a profunctor u : X •−→ Y , defined as a functor u : Xop×Y → Set. A cell
a : (u f

g v) is a natural transformation a : u → v(f op×g) : Xop×Y → Set. Compositions
and comparisons are known or easily defined.

The cotabulator ⊥u = X +u Y of a profunctor u : X •−→ Y is the gluing, or collage, of
X and Y along u, with new maps given by (⊥u)(x, y) = u(x, y) and no maps ‘backwards’;
the composition of the new maps with the old ones is defined by the action of u. The
inclusions i : X → ⊥u and j : Y → ⊥u are obvious, as well as the structural cell ι : (u i

j e)

ι : u→ e⊥u(i
op×j) : Xop×Y → Set, ι(x, y) : u(x, y) = ⊥u(x, y). (21)

The tabulator >u is the category of elements of u, or Grothendieck construction. It
has objects (x, y, λ) with x ∈ ObX, y ∈ ObY , λ ∈ u(x, y) and maps (f, g) of X×Y which
form a commutative square in the collage X +u Y

(f, g) : (x, y, λ)→ (x′, y′, λ′) (f : x→ x′, g : y → y′),

gλ = λ′f (u(1x, g)(λ) = u(f, 1y)(λ
′) ∈ u(x, y′)).

(22)

The functors p, q are obvious, and the structural cell τ = tu : e>u → u is the natural
transformation

τ : e>u → u(pop×q) : (>u)op×>u→ Set,

τ(x, y, λ;x′, y′, λ′) : >u(x, y, λ;x′, y′, λ′)→ u(x, y′), (f, g) 7→ gλ = λ′f.
(23)

Cat is easily seen to be span and cospan representable. Indeed, for a cell a : (u f
g v),

both the functors >a and ⊥a determine every component axy : u(x, y)→ v(fx, gy) of the
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natural transformation a : u→ v(f op×g) : Xop×Y → Set

>a : >u→ >v, >a(x, y, λ) = (fx, gy, axy(λ)),

⊥a : ⊥u→ ⊥v, ⊥a(λ : x→ y) = axy(λ) : fx→ gy (λ ∈ u(x, y)).
(24)

10. Representing adjoints.

We prove now that the double category AdjCat of (small) categories, functors and ad-
junctions, introduced in [GP1], Section 3.5, is also span and cospan representable.

Again Hor0(AdjCat) = Cat. A vertical arrow is now an ordinary adjunction, conven-
tionally directed as the left adjoint

u = (u•, u
•, η, ε) : X •−→ Y, (u• : X → Y ) a (u• : Y → X),

η : 1X → u•u•, ε : u•u
• → 1Y .

(25)

A double cell a = (a•, a
•) : u → v is a pair of mate natural transformations, each of

them determining the other via the units and counits of the two adjunctions

a• : v•f → gu•, a• : fu• → v•g,

a• = (fu• → v•v•fu
• → v•gu•u

• → v•g),

a• = (v•f → v•fu
•u• → v•v

•gu• → gu•).

(26)

(a) In AdjCat the tabulator >u of an adjunction u = (u•, u
•) : X •−→ Y is the ‘graph’

of the adjunction, namely the following comma category, equipped with the comma-
projections p, q and an obvious cell τ = tu : (e pq u)

>u = (u• ↓Y ) ∼= (X ↓u•), (x, y; c : u•x→ y)↔ (x, y; c′ : x→ u•y),

p : >u→ X, q : >u→ Y,

τ• : u•p→ q : >u→ Y, τ•(x, y; c) = c : u•x→ y.

(27)

The tabulator of a cell a : (u f
g v), with components a•x : v•fx→ gu•x, is the following

functor

>a : >u→ >v, >a(x, y; c : u•x→ y) = (fx, gy; g(c).a•x : v•fx→ gy). (28)

This proves that AdjCat is span representable: in fact the component a•x : v•fx →
gu•x is determined by >a(x, u•x; 1 : u•x→ u•x) = (fx, gu•x; a•x : v•fx→ gu•x).

(b) In AdjCat the cotabulator C = ⊥u = X+uY is the category consisting of the disjoint
union X + Y , together with new maps ĉx = (x, y; c : u•x→ y)̂ ∈ C(x, y) from objects of
X to objects of Y that are ‘represented’ by objects (x, y; c : u•x → y) of >u = (u• ↓ Y );
the composition of the new maps with old maps ϕ ∈ X(x′, x), ψ ∈ Y (y, y′) is defined in
the obvious way

ψ.ĉx.ϕ = (x′, y′;ψ.c.u•(ϕ) : u•x
′ → u•x→ y → y′)̂ . (29)
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The universal cell ι• : i→ ju• : X → ⊥u is given by ι•x = (1u•x)̂ ∈ C(x, u•x).
The cotabulator of a cell a : (u f

g v), with components a•x : v•fx → gu•x, works as f
and g on the old objects and arrows, as >a on the new arrows

⊥a : ⊥u→ ⊥v, ⊥a(x, y;h : u•x→ y)̂ = (fx, gy; g(h).a•x : v•fx→ gy)̂ . (30)

This determines a•x as above.

11. Representing Dbl

The strict double category Dbl of weak double categories, lax functors and colax functors
is a crucial structure, on which the theory of double adjoints is based. We refer the reader
to its introduction in [GP2], Section 2, where the non-obvious point of double cells is dealt
with.

We prove now that Dbl is span representable, horizontally and vertically.

(a) First, every colax functor U : A •−→ B has a horizontal tabulator (T, P,Q, τ).
The weak double category T = U ↓B is a ‘one-sided’ double comma ([GP2], Section

2.5), with strict projections P and Q, which can be used as horizontal or vertical arrows.
Below the cell η is simply represented by the horizontal transformation 1Q : Q → Q and
the tabulator cell τ = tU is linked to the comma-cell π by the unit η and counit ε of the
companionship of Q with ‘itself’ (see [GP2])

T 1 //

•e

��

U ↓B P //

•Q

��

A
•U

��
η π τ = (η |π), π = ( τ

ε
).

T
Q

// B
1
// B

(31)

To be more explicit, the tabulator T has objects

(A,B, b : UA→ B), (32)

with A in A and b horizontal in B. A horizontal arrow of T

(a, b) : (A1, B1, b1)→ (A2, B2, b2), (33)

‘is’ a commutative square in Hor0B, as in the upper square of diagram (35), below (where
the slanting direction must be viewed as horizontal). A vertical arrow of T

(u, v, w) : (A1, B1, b1)→ (A3, B3, b3), (34)

‘is’ a double cell in B, as in the left square of diagram (35). A double cell (β, β′) of T
forms a commutative diagram of double cells of B

(β, β′) : ((u, v, ω)
(a,b)
(a′,b′) (u′, v′, ω′)), (ω | β′) = (β |ω), (35)
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•
Ua //

•
Uu

��

b1
��

•
b2

��

•
Ua //

•
Uu

��

•

•
Uu′

��

b2

��
• b //

•v

��

=

•

•
v′

��

•

•
v′

��

•

b3 ��

ω

• Ua′ //

b3 ��

β

=

•

b4
��

ω′

•
b′

//

β′

• •
b′

// •

The composition laws of T are obvious, as well as the (strict) double functors P,Q.
The double cell τ has components

τ(A,B, b) = b : UA→ B, τ(u, v, ω) = ω : Uu→ v. (36)

Its universal property follows trivially from that of the double comma, in [GP2], The-
orem 2.6(a).

(b) We have thus a span representation

S : Dbl→ Span(LxDbl), (37)

where LxDbl = Hor0Dbl is the category of weak double categories and lax functors. (Note
that, even though the projections P,Q of the double comma T are strict double functors,
a cell ϕ : (U F

G V ) in Dbl gives a lax functor >ϕ : >U → >V .)
To prove that Dbl is horizontally span representable, we use the vertical universal

property of the double comma T = U ↓ B, in [GP2], Theorem 2.6(b), and deduce the
existence of a colax functor W : A→ T and a cell ξ such that:

A
•

W

��

A
•
1

��
ξ

>U P //

•Q
��

A
•
U
��

= 1U (QW = U).

π

B B

(38)

Now a cell ϕ : (U F
G V ) in Dbl can be recovered from the lax functor >ϕ : >U → >V as

follows
ϕ = (1U |ϕ) = (ξ ⊗ π | eF ⊗ ϕ) = (ξ ⊗ tU ⊗ ε | eF ⊗ ϕ⊗ eG)

= (ξ | eF )⊗ (tU |ϕ)⊗ (ε | eG) = (ξ | eF )⊗ (>ϕ | tV )⊗ (ε | eG).

(c) Transpose duality leaves Dbl invariant up to isomorphism: sending an object A to
the horizontal opposite Ah and transposing double cells we have an isomorphism Dbl →
Dblt. Therefore Dbl is also vertically span representable, which means that Dblt is span
representable by a lax functor

S ′ : Dblt → Span(CxDbl) (CxDbl = Hor0Dblt = Ver0Dbl). (39)
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The latter sends a lax functor F : A→ B to the span S ′(F ) = (A ← T′ → B) associated
to its vertical tabulator (T, P,Q, τ), where the weak double category T = B↓F has objects
(A,B, b : B → FA), and the cell τ is vertically universal

T 1 //

•
P
��

T
•Q
��

τ

A
F
// B

(40)

12. Theorem (Representing quintets)

The 2-category C is 2-complete if and only if the associated double category QC of quintets
has all double limits. In this case the double category QC is span representable.

Proof. Let us recall that the double category QC of quintets (introduced by C. Ehres-
mann) has for horizontal and vertical maps the morphisms of C, while its double cells are
defined by 2-cells of C

X
f //

u
��

ϕpp

X ′

v
��

ϕ : vf → gu : X → Y ′.

Y g
// Y ′

(41)

It is known that C is 2-complete if and only if it has 2-products, 2-equalisers and cotensors
by the arrow-category 2 [St]. First, it is easy to see that 2-products (resp. 2-equalisers)
in C are ‘the same’ as double products (resp. double equalisers) in QC. Second, the
cotensor 2 ∗ X can be obtained as the tabulator of the vertical identity of X: they are
defined by the same universal property.

Conversely, if the C-morphism u : X → Y is viewed as vertical in QC, its tabulator
(>u; p, q; τ) can be constructed as the following inserter (>u; i, τ)

>u i // X×Y
up′ //
p′′
// Y, τ : up′i→ p′′i : >u→ Y, (42)

letting p = p′i : >u→ X, q = p′′i : >u→ Y and viewing τ as a double cell with boundary
(1 p

q u).

If C is 2-complete, QC is span representable because the lax span representation
S : QC → Span(C) operates on a double cell a : vf → gu of QC producing a morphism
of spans Sa : Su→ Sv whose central map >a : >u→ >v is defined as follows

tu : up′i→ p′′i : >u→ Y, tv : vq′j → q′′j : >v → Y ′,

j.>a = (f×g)i, tv.>a = gtu.ap
′i : vfp′i→ gp′′i.

(43)
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>u i //

>a
��

X×Y
up′ //
p′′
//

f×g
��

Y
g
��

>v
j
// X ′×Y ′

vq′ //
q′′
// Y ′

Now f and g are determined as the vertical faces of the morphism Sa. To recover the
2-cell a : vf → gu of C from the morphism >a, one uses the map h : X → >u determined
by the conditions ih = (1, u) : X → X×Y and tu.h = 1u, so that

tv.>a.h = (gtu.ap
′i)h = gtuh.ap

′ih = ap′(1, u) = a.

13. Splitting tabulators

In order to ‘explain’ how so many double categories are span representable, we observe
that the proof for the non-obvious cases above follows a pattern of the following type (as
in Section 12), or a vertical version of the same (as in Section 11). However the argument
is rather complicated, and - in the examples above - we preferred to give a direct proof,
following this guideline.

We are in a weak double category A with tabulators, and the category C = Hor0(A)
has pullbacks. In order that A be span representable it is sufficient that, for every vertical
arrow u, there exist two cells su and ε satisfying the following condition:

X
h //

•u

��

>u p //

•e

��

X
•u

��

X

•u

��

tu

su >u q //

•q∗
��

Y
•e
��

ρu = 1u.

ε

Y Y Y Y

(44)

(Typically, q∗ is the vertical companion of q and ε = εq its counit, but this is not
needed in the proof. In the strict case ρu is trivial.)

In fact one can recover a cell a : (u f
g v) from >a (and Sa), as follows

a = (su |
tu
ε
| ρu | a) = (su |

tu
ε
| a
eg
| ρv) = (su |

tu | a
ε | eg

| ρv) = (su |
>a | tv
ε | eg

| ρv).
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