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Calculus of differences

o Aim: Categorify Newton's difference operator A

- For f:R—R, A[f](®)=f(x+1)-f(x)
- A discrete version of derivative

o Inspired in part by:

- Work on polynomial functors by Kock [6], Niu/Spivak [7], and many others
- Work on analytic functors by Joyal [5] et. al.

- Multivariable analytic functors, e.g. Fiore/Gambino/Hyland/Winskel [4]
- Differential structures, see Cockett/Cruttwell [3]

o Likely related to:

- The cartesian difference categories of Alvarez-Picallo/Pacaud-Lemay [1]
- The Goodwillie calculus, see e.g. Bauer/Johnson/Osborne/Riehl/Tebbe [2]
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General idea
e For F: Set—Set, perturb the input and measure the difference in output

AlFI(X)=FX+1\F(X)

Example
F(X) = X3, then F(X+1) has eight kinds of elements:

(x1, X2, x3)

(%1, X2, %), (x1, *, X3), (%, X2, x3)
(x1, %, %), (%, X2, %), (%, %, x3)
(%, *, %)

A[F](X) = 3X%+3X +1

Example
F(X) =2% covariant power set, then F(X +1) has two kinds of elements:

AcXcCX+1
Au{xlcX+1 (AcX)
A[F](X) =2%
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Tautness

e F(X+1)\F(X) not always functorial

Definition
(Manes 2002) A functor is taut if it preserves inverse images

Ag>— A FAp>— FA
fol Lf _ Ffoj lFf
By>——B FBy>— FB

A natural transformation ¢: F—G is taut if the naturality squares
corresponding to monos are pullbacks

FAy>——FA

tAg l tA

GAg>—— GA

o Get a sub-2-category Jaut of 6at whose objects are categories with inverse
images and taut functors and taut natural transformations
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Limits

Taut functors are closed under limits.

Proposition

(1) Limits in €at(Set,Set) of taut functors are taut.
(2) The inclusion
Jaut(Set,Set) >—%6at(Set, Set)
creates non-empty connected limits.

(3) The product of taut functors is taut but the projections are not.
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Confluence

Theorem
1 colimits commute with inverse images in Set if and only if

I
ay ay
v Io/ 3 / \ Bray=praz .

Definition
If I satisfies the above conditions we say it's confluent.

Example

Filtered colimits, coproducts, quotients by group actions are all confluent.

Proposition
(1) Confluent colimits in 6at(Set,Set) of taut functors are taut.
(2) Jaut(Set,Set) >—6at(Set,Set) creates all colimits.
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Examples

« Polynomial functors P(X) = ¥ X* are taut
iel

_ n
e Analytic functors F(X) :f X"xF(m) =Y X" x F(n)/Sy are taut
n

(F: Bij—=Set a species)

e Manes: Collection monads are finitary taut monads
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The difference operator

Proposition

(1) If F: Set—=Set is taut then
A[FI(X)=F(X+D\F(X)

defines a taut subfunctor of F(X +1).

(2) A taut transformation t: F—G restricts to a taut transformation
Alt]: A[Fl—=A[G].

The functor
A: Jaut(Set, Set) —Jaut(Set, Set)

is called the difference operator.

Example
A[C]=0
AlX]=1
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Colimits

Proposition
A preserves colimits: For T': I—=Jaut(Set, Set)
A[limT ] = limA[T ]
1 1

Corollary
(1) A[F+G] = A[F] + A[G]

(2) AICF] = CA[F]

9/31



Limits

Proposition
A[F x G] = (A[F] x G) + (F x A[G]) + (A[F] x A[G]).

More generally:

Proposition

A

[1F:

iel

[ ] AlFk]
keJ

-5 (5[]

JeI\jeJ

Theorem
A preserves non-empty connected limits

AllimT'1] 2 imA[T]].
1 1
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Lax chain rule

Theorem
For taut functors F and G there is a taut natural transformation

YG,F: (AlG]o F) x A[F]—=A[Go F]

which is:

(1) monic,

(2) natural in F and G,
(3) associative

idxyg,r
(A[H]oGoF) x (A[G]oF) x A[F] ———— (A[H]oGo F) x A[Go F]
YH,GoF xid lYH,GOF
(A[HoG]oF) x A[F] A[HoGoF] ,
Y HoG,F
(4) unitary Yo
(A[ld] o F) x A[F] —> AlldoF] (A[F]old) x A[Id] —> A[FoId]
1x A[F] ———= A[F] , A[F]x1 ——— > A[F]
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Tangent structure

For a taut functor F we define
T
Set x Set —— Set x Set
Py Py
Set —F> Set

TX,Y)=(FX,A[FI(X)xY)

Proposition
T: Jaut(Set, Set) —>Jaut(Set x Set, Set x Set) is a lax normal monoidal functor
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Polynomial functors

Proposition
Ifrx)=Y X4 is a polynomial functor, then A[P1(X) is again polynomial
iel
API) = Y XS
SgAi, iel
Example
AlxA = Y xS
ScA
Example
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Multivariable functors

¢ Extend the difference calculus to functors
F: SetA—>-SetB

B families of functors in A variables

o Partial difference with respect to A:

For @ in Set?, perturb it by adding a single element of type A freely,
O~~~ DP+A(A-)

AAFI(®) = F(@+A(A,-)\F(P)

o The one-variable theory carries over with some modifications

e Based on profunctors
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Profunctors (a.k.a. 2-matrices)

o A profunctor P: A—>B is a functor P: A°P? x B—=Set
A morphism of profunctors is a natural transformation

e P can be thought of as a B by A matrix of sets
o Composition of P: A—s>B with Q: B—>C is "matrix multiplication”

B
(QeP)(A Q) =f Q(B,C) x P(A,B)

¢ |dentities are hom functors

Idp =A(—,—): A°” x A—=Set
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2-vectors (a.k.a. presheaves)

o A profunctor 1T—>A is a functor 1°? x A—=Set which we identify with the
presheaf @ ¢ SetA

« Composing @ with a profunctor P gives an object P& ® of Set® and so we
get a functor P (): Seth—=Set® which is cocontinuous (2-linear)
o lts partial difference with respect to A is

ApAP®()](®P) =P (DP+A(A-)\PD
Z(PDP+P®A(A-)\PD
=P®A(A-)
=P(A-)

a constant functor (independent of @)

Set® —Set®
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Tense functors

P® () is not taut!

Definition
F is tense if it preserves complemented subobjects and their pullbacks

t: F—G is tense if the naturality squares corresponding to complemented
subobjects are pullbacks

o If F preserves binary coproducts then it's tense, so P® () is tense

e There is a sub-2-category of 6at, Tense, consisting of presheaf categories,
tense functors and tense natural transformations
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Limits and colimits

Proposition

(1) Let T': I—=6at(Set?,SetB) be such that T(I) is tense for every 1. Then
limT is also tense. If 1 is confluent so is limT.

(2) Tense(Seth,Set®) —=Bar(Setd, Set®) creates non-empty connected lim
and all lim.
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Partial difference

Proposition
Let F: Set* —>Set® be tense, then

ApIFI(®)=F(@®+A(A, )\ F(D)
defines a tense subfunctor
AA[F] >>F(—+A(A,-))
functorial in F
Ap: Jense (Set?, Set®) —Tense (Set}, SetP) .

Definition
A AlF] is the partial difference of F with respect to A.

e AylCl=0
e Ap[P®()]=P(A,-) (constant)
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Limits and colimits

Proposition
Ap: Jense (Set?, SetB) — Tense (Set?, SetB) preserves colimits and non-empty
connected limits

Corollary
(1) AAIF+ Gl 2 Ap[F1+A4lG
(2) AAIC % F1=C x A7[F)

Proposition

Aa

[1F:

iel

- z(np,.)x(nAA[pk])

jci\jes keJ

Corollary

AAlF x G] = (AA[F] % G) + (F x Aa[G]) + (A 4[F] x AalGD)
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(Discrete) Jacobian

For F: Set® —Set® a tense functor

Proposition
For @ in Set®, A 5[F1(®) is (contravariantly) functorial in A

A[F)(®): AP —>SetB

o A[F](®) is a profunctor A—>B, the (discrete) Jacobian of F at ®

Proposition
A[F1(®) is functorial in ® giving a tense functor

A[F]: Seth —=8et®””*B = grof (A, B)

Proposition

A[F] is functorial in F giving the Jacobian functor

A: Jense (SetA,SetB)—>3‘ense (SetA,SetAOPXB)
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Alternate formulations

« Differential operator
DIF]: Set® x Set® —>Set?

D[F](®,¥) =A[F](®)® V¥

DIF] is cocontinuous in the second variable

o Tangent functor
T[F
Setd x Set? % SetB x SetB
Py Py

Set?

SetB

T[F1(®,¥) = (F(D),A[F1(DP) @ ¥)

T[F] also cocontinuous in the second variable
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Lax chain rule

Theorem
For tense functors F: SetAa-SetB, G: SetB—=SetC and @ in Set® we have a
canonical comparison

Y: AIGI(F(D)) @B A[F1(DP) —A[GF](D)

which is

(1) natural in ®

(2) natural in F and G
(3) associative

(4) normal

Corollary

T: Jense —> Jense
SetA Set? x Set?
F — T[F]
SetB SetB x SetB

is a lax normal functor
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Multivariable analytic functors

After Fiore et al. [4]

o A free symmetric monoidal category generated by A
— Objects: finite sequences (Aj1,..., Ap)

— Morphisms: (0,(f1,-.., fm)): {AL,..., Ap)—=(A ..., A}))
o: m—sn bijection, f;: Ag;—>= A}

o A-B symmetric sequence (multivariable species) is a profunctor P: 1A —>=B
o Defines a multivariable analytic functor
P: Set® —Set®

B (Ay...Ap)EIA
P(CI))(B)zf P(A],...,A;B) x DA] x - x DA,

Theorem

P is tense and A[P] is an analytic functor SetA —SetA”" *B
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The difference symmetric sequence

A[P]= Q for Q: IA—=A°" xB

Q(A1,...,An; A B) = ZP(AL A, A, A BYHidp} x Sg

kth

where there are k A's in the summand

When A=B =1, |A ZBij and we recover the original definition of species and
analytic functor. Then
Q: Bij—Set

(e8]
Q)= Y P(n+k)/{id} x S
k=1

A Q-structure on n is a positive integer k and an equivalence class of
P-structures on n+ k, two structures being equivalent if there is a permutation
of n+k fixing the first n elements which transforms one into the other
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Exponential functors

e How should we categorify f(x)=a*, a>07?

Example

F(X)= 2X covariant power set

If L is a sup-lattice we can make F(X) = LX into a covariant functor
LX: Set—Set by Kan extension. For f: X—=Y and ¢ € LX

FHpym= V ¢.
fo=y

Proposition
LX: Set—=Set is taut and
ALK = L, x LX

where L, =L\ {l}.

Example
ABX =2 x3X
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Dirichlet functors?

e A first try might be
Fx)=Y L
iel
o For every positive integer n the ordinal

n={1<2<3<:--<n}

is a sup-lattice, but ...
e For any unbounded sequence nj <ny <...

EDNS

ieN neN
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Normalized exponentials
o LX is not connected: mo(LX) =L

X=Y g ={f: X—L|\/fw=1}
leL

e The normalized exponential
M ={f: X—1L| \/f0)=T}

o LX=Ywn® pin={lerL <t}

leL
Proposition
L'X1 s taut and
AWM=y ™
vI'=T
I'#l

Corollary
If T is join irreducible (i.e. IvI'=T=1=T orl'=T) then

AL 2L < 1%+ Y @/
17T

28/31



(Covariant) Dirichlet functors

Proposition
If {Lj)ier and (M) je; are two families of sup-lattices such that

Z LE‘X] =~ Z M][.X]
iel jeJ

then there is a bijection a: I—=] and lattice isomorphisms

Li = Mg -
Definition
A (covariant) Dirichlet functor is a functor of the form
Fx) =Y LY
iel

for (L;) a family of sup-lattices.
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Dirichlet difference

Proposition

Dirichlet functors are taut and closed under products and coproducts
Theorem
If F(X) = Yjer LX) is Dirichlet, then so is AIF1(X) and

AFIO =Y Cx L/
iel,leL;

where Cy={l"eL; | I'#L A IvI =T}
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