2-Monoidal Categories (à la Aguiar & Mahajan) or Duoidal Categories (à la Booker & Street)

Robert Paré

(April 1, 2014)

Definition

A duoidal category is a category $\mathbf V$ with two monoidal structures $(\mathbf V,\otimes,I,\dots)$ and $(\mathbf V,\boxtimes,J,\dots)$ related by interchange morphisms

$$\chi: (A \otimes B) \boxtimes (C \otimes D) \longrightarrow (A \boxtimes C) \otimes (B \boxtimes D)$$

$$\mu: I \boxtimes I \longrightarrow I$$

$$\delta: J \longrightarrow J \otimes J$$

$$\tau: J \longrightarrow I$$

such that either of the two equivalent conditions

$$\boxtimes : \mathbf{V} \times \mathbf{V} \longrightarrow \mathbf{V} \text{ and } J : \mathbf{1} \longrightarrow \mathbf{V}$$

are \otimes comonoidal functors

or

$$\otimes: \mathbf{V} \times \mathbf{V} \longrightarrow \mathbf{V}$$
 and $I: \mathbf{1} \longrightarrow \mathbf{V}$ are \boxtimes monoidal functors

are satisfied

Equivalently

- $lackbox(\mathbf{V},\otimes,I,\dots)$ is a pseudo-monoid in $\mathcal{M}on\mathcal{C}at_{comon}$ with multiplication \boxtimes and unit J or
- $(V, \boxtimes, J, ...)$ is a pseudo-monoid in $\mathcal{M}\textit{onCat}_{mon}$ with multiplication \otimes and unit I
- We can think of ⊗ as horizontal and ⋈ as vertical and write complicated expressions as matrices

Pseudo-Monoids

 \mathcal{A} a 2-category with products A *pseudo-monoid* in \mathcal{A} is

 α , λ , ρ coherent isomorphisms

Coherence Conditions

$$(A \otimes (B \otimes C)) \boxtimes (D \otimes (E \otimes F)) \xrightarrow{\alpha \otimes \alpha} ((A \otimes B) \otimes C) \boxtimes ((D \otimes E) \otimes F)$$

$$\downarrow \chi \qquad \qquad \qquad \downarrow \chi$$

$$\begin{bmatrix} x \\ \end{bmatrix}$$

 $(A \boxtimes D) \otimes ((B \boxtimes E) \otimes (C \boxtimes F)) \xrightarrow{\alpha} ((A \boxtimes D) \otimes (B \boxtimes E)) \otimes (C \boxtimes F)$

 $((A \otimes B) \boxtimes (D \otimes E)) \otimes (C \boxtimes F)$

 $\chi \otimes 1$

 $(A \boxtimes D) \otimes ((B \otimes C) \boxtimes (E \otimes F))$

 $1 \otimes \chi$

$$(I \otimes A) \boxtimes (I \otimes B) \xrightarrow{\lambda \boxtimes \lambda} A \boxtimes B$$

$$\downarrow^{\chi} \qquad \qquad \uparrow^{\lambda}$$

$$(I \boxtimes I) \otimes (A \boxtimes B) \xrightarrow{\mu \otimes 1} I \otimes (A \boxtimes B)$$

 $(A \otimes I) \boxtimes (B \otimes I) \xrightarrow{\rho \boxtimes \rho} A \boxtimes I$ $\downarrow \chi \qquad \qquad \downarrow \rho$

 $(A \boxtimes B) \otimes (I \boxtimes I) \xrightarrow{1 \otimes \mu} (A \boxtimes B) \otimes I$

$$J\boxtimes (A\otimes B) \xrightarrow{\delta\boxtimes 1} (J\otimes J)\boxtimes (A\otimes B)$$

$$\downarrow_{\chi'}$$

$$A \otimes B \leftarrow \bigvee_{\lambda' \otimes \lambda'} (J \boxtimes A) \otimes (J \boxtimes B)$$

$$(A \otimes B) \boxtimes J \xrightarrow{1 \boxtimes \delta} (A \otimes B) \boxtimes (J \otimes J)$$

$$A \otimes B \leftarrow_{\lambda' \otimes \lambda'} (J \boxtimes A) \otimes (J \boxtimes B)$$

$$(A \otimes B) \boxtimes J \xrightarrow{1 \boxtimes \delta} (A \otimes B) \boxtimes (J \otimes J)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

 $(I, \mu : I \boxtimes I \longrightarrow I, \tau : J \longrightarrow I)$ is a monoid in \mathbf{V}_{\boxtimes}

 $(J, \delta: J \longrightarrow J \otimes J, \tau: J \longrightarrow I)$ is a comonoid in \mathbf{V}_{\otimes}

Morphisms

$$F: (\mathbf{W}, \otimes, \boxtimes) \longrightarrow (\mathbf{V}, \otimes, \boxtimes)$$

- ▶ Double monoidal: monoidal for \otimes , \boxtimes (+ coh.)
- ▶ Bimonoidal: monoidal for \boxtimes , comonoidal for \otimes (+ coh.)
- ▶ Double comonoidal: comonoidal for \otimes , \boxtimes (+ coh.)

Between pseudo-monoids in a 2-category we can have monoidal or comonoidal morphisms

In $\mathcal{M}on\mathcal{C}at_{comon}$ we get bimonoidal and double comonoidal In $\mathcal{M}on\mathcal{C}at_{mon}$ we get double monoidal and bimonoidal

Double Monoids

Take W = 1, get: Double monoids in V $M \boxtimes M \xrightarrow{m} M$, $M \otimes M \xrightarrow{m'} M$ $J \xrightarrow{u} M$, $I \xrightarrow{u'} M$ $(M \otimes M) \boxtimes (M \otimes M) \xrightarrow{m' \boxtimes m'} M \boxtimes M$ $(M \boxtimes M) \otimes (M \boxtimes M)$ m $m \otimes m$

If ${\bf V}$ is braided this reduces to commutative monoid Dually we have double comonoids

Bimonoids

Also get bimonoids in V

Tensor Product of Monoids

 $\otimes: \mathbf{V}_{\boxtimes} \times \mathbf{V}_{\boxtimes} \longrightarrow \mathbf{V}_{\boxtimes}$ and $I: \mathbf{1} \longrightarrow \mathbf{V}_{\boxtimes}$ are monoidal functors, so preserve monoids

Makes $Mon(\mathbf{V}_{\boxtimes})$ into a monoidal category with \otimes as tensor and I as unit Can consider monoids or comonoids in $Mon(\mathbf{V}_{\boxtimes})$ and get another description of double monoids and bimonoids

That $I: \mathbf{1} \longrightarrow \mathbf{V}_{\boxtimes}$ preserves monoids means that I is a \boxtimes -monoid

Enriched Categories

Consider categories enriched in \mathbf{V}_{\boxtimes}

 $\otimes: \textbf{V}_{\boxtimes} \times \textbf{V}_{\boxtimes} {\:\longrightarrow\:} \textbf{V}_{\boxtimes}$ induces a 2-functor

$$(\mathbf{V}_{\boxtimes} \times \mathbf{V}_{\boxtimes})$$
- \mathcal{C} at $\longrightarrow \mathbf{V}_{\boxtimes}$ - \mathcal{C} at

For two V_{\boxtimes} -categories A, B we get a canonical $V_{\boxtimes} \times V_{\boxtimes}$ -category $A \times B$ This produces $A \otimes B$

- ▶ Objects are pairs (A, B)
- ► Homs $(\mathbf{A} \otimes \mathbf{B})((A, B), (A', B')) = \mathbf{A}(A, A') \otimes \mathbf{B}(B, B')$

Makes V_{\boxtimes} -Cat into a monoidal category

$$(\mathbf{A}(A',A'') \otimes \mathbf{B}(B',B'')) \boxtimes (\mathbf{A}(A,A') \otimes \mathbf{B}(B,B')) \qquad J$$

$$\downarrow \qquad \qquad \qquad \delta \qquad \qquad$$

 $\mathbf{A}(A,A)\otimes\mathbf{B}(B,B)$

 $\circ_{\mathsf{A}} \otimes \circ_{\mathsf{B}}$

 $\mathbf{A}(A,A'')\otimes\mathbf{B}(B,B'')$

Examples

A braided monoidal category is duoidal with

Proposition

A duoidal category with χ , μ , δ , τ isomorphisms is equivalent to a braided monoidal category

X-Graph

$$A \xrightarrow{s} X$$

$$A \boxtimes B = \{x \xrightarrow{a} y \xrightarrow{b} z\}$$

$$A \otimes B = \{x \xrightarrow{a} y\}$$

$$J = (X \xrightarrow{1} X) \text{ (only loops)}$$

$$I = (X \times X \xrightarrow{\pi_1} X) \text{ (complete graph)}$$

$$(A \otimes B) \boxtimes (C \otimes D) = \left\{x \xrightarrow{b} y \xrightarrow{c} z\right\}$$

$$(A \boxtimes C) \otimes (B \boxtimes D) = \left\{x \xrightarrow{b} y \xrightarrow{c} z\right\}$$

A monoid in X-**Graph** \boxtimes is a small category. Every such monoid is uniquely a bimonoid

$$d: (x \xrightarrow{a} y) \longmapsto (x \xrightarrow{a} y)$$

A double monoid is a category enriched in $(\mathbf{Mon}, \times, 1)$

Products

 $(\mathbf{V}, \boxtimes, J)$ monoidal category with finite products (no preservation) If we take $\otimes = x$ and I = 1 we get a duoidal category with the canonical

$$\chi: (A \times B) \boxtimes (C \times D) \longrightarrow (A \boxtimes C) \times (B \boxtimes D)$$

$$\mu: 1 \boxtimes 1 \longrightarrow 1$$

$$\delta: J \longrightarrow J \times J$$

$$\tau: J \longrightarrow 1$$

- ► X-Graph
- ▶ Quantale Q, $\boxtimes = \&$, $\otimes = \land$
- ▶ \mathbb{N} -Graded sets (A_0, A_1, A_2, \dots)
- \boxtimes = Cauchy product $(A_n) \boxtimes (B_n) = (\sum_{p+q=n} A_p \times B_q)$
- $\otimes = \mathsf{Hadamard} \; \mathsf{product} \; (A_n) \otimes (B_n) = (A_n \times B_n)$

Day Convolution

- ▶ Can replace \mathbb{N} by any small monoidal category $(\mathbf{M}, *, E)$
- ▶ Day convolution makes Set^M into a monoidal category

$$(\Phi \boxtimes \Psi)(X) = \varinjlim_{Y*Z \to X} \Phi Y \times \Psi Z$$
$$J = \mathbf{M}(E, -)$$

$$\frac{\Phi \boxtimes \Psi \longrightarrow \Theta}{\langle \Phi Y \times \Psi Z \longrightarrow \Theta(Y * Z) \rangle_{Y,Z}}$$

▶ A monoid for ⊠ is a monoidal functor

$$\Phi: (\mathbf{M}, *) \longrightarrow (\mathbf{Set}, x)$$

- ▶ A bimonoid is the same thing
- A double monoid is a monoidal functor

$$(M,*) \longrightarrow (Mon,x)$$

New Duoidal Categories from Old (1)

 $(V, \otimes, I, \boxtimes, J)$ Duoidal with coproducts preserved by \boxtimes , and X set X-**Mat** is the category of $X \times X$ -matrices of objects V \boxtimes matrix multiplication

$$[V_{xy}] \boxtimes [W_{xy}] = [\sum_{z} V_{xz} \boxtimes W_{zy}]_{xy}$$
$$J_{xy} = \begin{cases} J & \text{if } x = y \\ 0 & \text{o.w.} \end{cases}$$

⊗ Hadamard product

$$[V_{xy}] \otimes [W_{xy}] = [V_{xy} \otimes W_{xy}]$$

$$I_{xy} = I \text{ all } x, y$$

$$((V \otimes W) \boxtimes (R \otimes S))_{xy} = \sum_{z} (V_{xz} \otimes W_{xz}) \boxtimes (R_{zy} \otimes S_{zy})$$

$$((V \boxtimes R) \otimes (W \boxtimes S))_{xy} = (\sum_{z} V_{xz} \boxtimes R_{zy}) \otimes (\sum_{z} W_{xz'} \boxtimes S_{z'y})$$

New Duoidal Categories from Old (2)

N-Graded V-objects

$$(A_n)\boxtimes (B_n)=(\sum_{p+q=n}A_p\boxtimes B_q)$$
 (Cauchy)

$$(A_n) \otimes (B_n) = (A_n \otimes B_n)$$
 (Hadamard)

Can replace $\mathbb N$ by any small monoidal category $(\mathbf M,*,E)$ Assume $\mathbf V$ has colimits preserved by \boxtimes $\mathbf V^{\mathbf M}$ (all functors) is duoidal with

$$\Phi \boxtimes \Psi(X) = \varinjlim_{Y*Z \to X} \Phi Y \boxtimes \Psi Z$$

$$J(X) = \sum_{E \to X} J$$

$$\Phi \otimes \Psi(X) = \Phi X \otimes \Psi X$$

$$I(X) = I$$

Day Convolution Redux

 $(\mathbf{V}, \otimes, \boxtimes)$ a small duoidal category

 $\mathbf{Set}^{\mathbf{V}^{op}}$ becomes a duoidal category with

 $\otimes = \mathsf{Day}\ \mathsf{convolution}\ \mathsf{using}\ \otimes$

 $oxtimes = \mathsf{Day}$ convolution using oxtimes

 $Y: \mathbf{V} \longrightarrow \mathbf{Set}^{\mathbf{V}^{op}}$ preserves \otimes and \boxtimes

Completion of V (Booker/Street Theorem 4.8)

M-Objects (Actions)

Let M, N be monoids in \mathbf{V}_{\boxtimes} Let (A, α) be an M-object and (B, β) an N-object in \mathbf{V}_{\boxtimes} Then $A \otimes B$ becomes an $M \otimes N$ -object

$$(M \otimes N) \boxtimes (A \otimes B) \xrightarrow{\chi} (M \boxtimes A) \otimes (N \boxtimes B) \xrightarrow{\alpha \otimes \beta} A \otimes B$$

Gives a functor

$$\bar{\otimes}: \mathbf{V}_{\boxtimes}^{M} \times \mathbf{V}_{\boxtimes}^{N} \longrightarrow \mathbf{V}_{\boxtimes}^{M \otimes N}$$

If M is a bimonoid in **V**

$$d: M \longrightarrow M \otimes M$$

$$e: M \longrightarrow I$$

are monoid homomorphisms

$$\mathbf{V}_{\boxtimes}^{M\otimes M} \longrightarrow \mathbf{V}_{\boxtimes}^{M}$$

Combine this with $\bar{\otimes}$ gives

$$\otimes: \mathbf{V}_{\boxtimes}^{M} \times \mathbf{V}_{\boxtimes}^{M} \longrightarrow \mathbf{V}_{\boxtimes}^{M}$$

So $(A, \alpha) \otimes (B, \beta)$ is given by

$$M\boxtimes (A\otimes B) \xrightarrow{d\boxtimes 1} (M\otimes M)\boxtimes (A\otimes B) \xrightarrow{\chi} (M\boxtimes A)\otimes (M\boxtimes B) \xrightarrow{\alpha\otimes\beta} A\otimes B$$

Also:
$$M \boxtimes I \xrightarrow{e \boxtimes 1} I \boxtimes I \xrightarrow{\mu} I$$

Theorem

If M is a bimonoid then $\mathbf{V}_{\boxtimes}^{M}$ is a monoidal category with \otimes and $(I, \mu \cdot e \boxtimes 1)$.

Question: If V_{\otimes} is closed and V has finite limits, is V_{\boxtimes}^{M} also closed?

References

- Aguiar & Mahajan, Monoidal Functors, Species and Hopf Algebras http://www.math.tamu.edu/~maguiar/a.pdf (Ch. 6)
- Booker & Street, Tannaka Duality and Convolution for Duoidal Categories, TAC Vol. 28, No. 6, 2013 (pp. 166-205)
- nLab duoidal categories