Retrocells

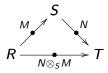
Robert Paré

CT2019 Edinburgh, Scotland

July 10, 2019

Bimodules

•The bicategory $\mathcal{B}im$ has rings R, S, T, \ldots as objects, bimodules $M: R \longrightarrow S$ as 1-cells, and S-R-linear maps as 2-cells Composition is \otimes



• $\mathcal{B}im$ is biclosed, \otimes has right adjoints in each variable

$$\frac{M \longrightarrow N \otimes_T P}{N \otimes_S M \longrightarrow P}$$

$$N \longrightarrow P \otimes_R M$$

$$N \otimes_T P = Hom_T(N, P), P \otimes_R M = Hom_R(M, P)$$

Biclosed

Many bicategories are biclosed

• Bim : Rings, bimodules, linear maps

ullet ${\cal P}{\it rof}$: Categories, profunctors, natural transformations

• **V**- $\mathcal{P}rof$: **V** — with colimits preserved by \otimes

biclosed

limits

Span(A) : A with pullbacks and locally cartesian closed

Scandal

Good bicategories (all of the above) are the vertical part of naturally occurring double categories:

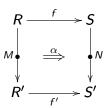
Ring, Cat, V-Cat, SpanA

But the internal homs \oslash and \bigcirc are not double functors!

Double categories

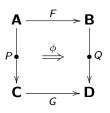
• A double category is a "category with two sorts of morphisms"

• Example: Ring



$\mathbb{C}at$

• Example: Cat



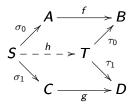
$$P: \mathbf{A}^{op} \times \mathbf{C} \longrightarrow \mathbf{Set}$$

$$Q: \mathbf{B}^{op} \times \mathbf{D} \longrightarrow \mathbf{Set}$$

$$\phi: P(-, =) \longrightarrow Q(F-, G =)$$

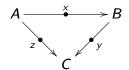
Span

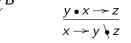
 \bullet Example: $\mathbb{S}\mathrm{pan}\,\boldsymbol{A}$



Left homs

• A has *left homs* if $y \cdot ()$ has a right adjoint $y \cdot ()$ in Vert A





in $Vert\mathbb{A}$

Mike Shulman, "Framed bicategories and monoidal fibrations" (TAC 2008) Roald Koudenburg, "On pointwise Kan extensions in double categories" (TAC 2014)

Respecting boundaries

• $y \nmid z$ is covariant in z and contravariant in y

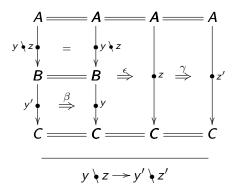
$$y' \xrightarrow{\beta} y, z \xrightarrow{\gamma} z' \quad \leadsto \quad y \setminus z \xrightarrow{\beta \setminus \gamma} y' \setminus z'$$

Respecting boundaries

• $y \nmid z$ is covariant in z and contravariant in y

$$y' \xrightarrow{\beta} y, z \xrightarrow{\gamma} z' \quad \leadsto \quad y \setminus z \xrightarrow{\beta \setminus \gamma} y' \setminus z'$$

• We have evaluation $\epsilon: y \bullet (y \triangleright z) \longrightarrow y$

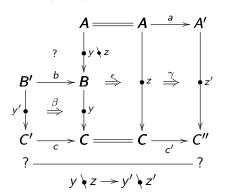


Respecting boundaries

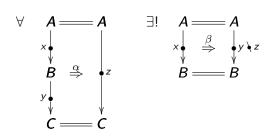
• $y \nmid z$ is covariant in z and contravariant in y

$$y' \xrightarrow{\beta} y, z \xrightarrow{\gamma} z' \quad \rightsquigarrow \quad y \setminus z \xrightarrow{\beta \setminus \gamma} y' \setminus z'$$

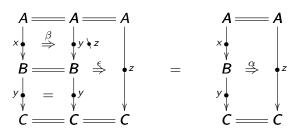
• We have evaluation $\epsilon: y \bullet (y \triangleright z) \longrightarrow y$



Globular universal

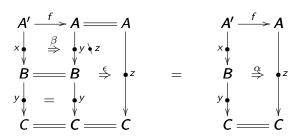


s.t.



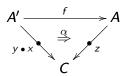
More universal

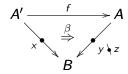
s.t.



Strong universality

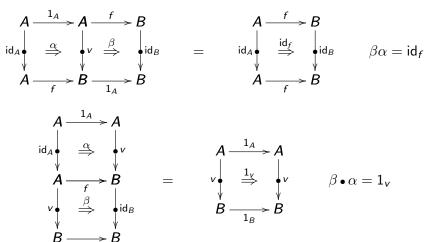
Strong universal property:





Companions

• In a double category \mathbb{A} , a vertical arrow $v:A \longrightarrow B$ is a *companion* of a horizontal arrow $f:A \longrightarrow B$ if there are *binding cells* α and β such that



Properties

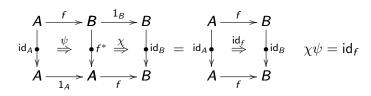
- ullet Companions, when they exist, are unique up to globular isomorphism We make a choice of companion f_* and, following Ronnie Brown, denote the binding cells by corner brackets
- ullet We have $(1_A)_*\cong \operatorname{id}_A$ and $(gf)_*\cong g_*f_*$

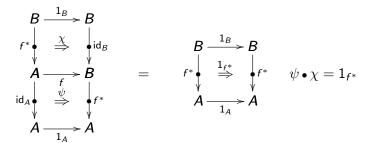
•

gives a bijection between ϕ 's and ψ 's

Conjoints

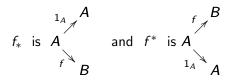
There is a dual notion of *conjoint* f^*





Examples

- In Ring, f: R→S
 f* is S considered as an S-R bimodule
 f* is S considered as an R-S bimodule
- In $\mathbb{C}at$, $F : \mathbf{A} \longrightarrow \mathbf{B}$ $F_* = \mathbf{B}(F-,=)$ and $F^* = \mathbf{B}(-,F=)$
- In $Span(\mathbf{A})$, $f: A \longrightarrow B$



What strong means

• The strong universal property is equivalent to the globular one plus the stability property

$$y \setminus (z \bullet f_*) \cong (y \setminus z) \bullet f_*$$

• If every horizontal arrow has a conjoint, then the strong universal property is equivalent to the globular one

Left duals

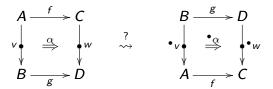
- Suppose A left closed
- For $v: A \longrightarrow B$ we can define its *left dual* $v = v \setminus id_B : B \longrightarrow A$ We have

$${}^{\bullet} \operatorname{id}_{B} \cong \operatorname{id}_{B}$$

$${}^{\bullet} v \bullet {}^{\bullet} w \longrightarrow {}^{\bullet} (w \bullet v)$$

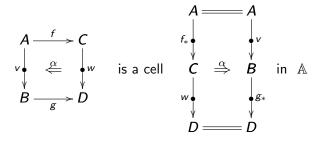
So perhaps we get a lax normal

$$\mathbb{A}^{co} \longrightarrow \mathbb{A}$$



Retrocells

A retrocell



Quintets

• Example: In $\mathbb{Q}(A)$, a cell is a quintet

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow \\
C & \xrightarrow{g} & D
\end{array}$$

and a retrocell is a coquintet

Mates

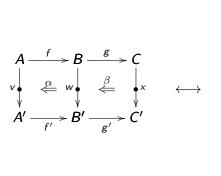
Proposition

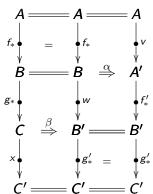
(1) If v and w as below have right adjoints v' and w' in $Vert \mathbb{A}$, then retrocells α are in bijection with standard cells β :

(2) If f and g have right adjoints h and k in \mathcal{H} or \mathbb{A} , then retrocells α are in bijection with standard cells γ :

Composition

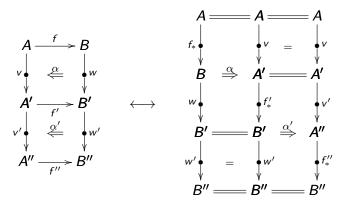
Retrocells can be composed horizontally





Composition

and vertically



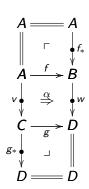
Theorem

This gives a double category \mathbb{A}^{ret} . \mathbb{A}^{ret} has companions and $(\mathbb{A}^{ret})^{ret} \cong \mathbb{A}$

Commuter cells

• In M. Grandis, R. Paré, Kan extensions in double categories, TAC 2008, we introduced *commutative cells* to express the universal property of comma double categories

is a *commuter cell* if

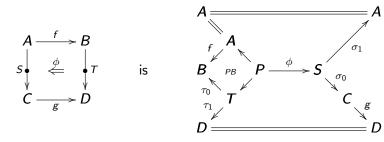


is horizontally invertible

• The inverse would be a retrocell

Retrocells of spans

• In Span(A)



• In \mathbb{S} et = \mathbb{S} pan(**Set**) Denote an element of S by $s: a \longrightarrow c$ $(\sigma_0 s = a, \sigma_1 s = c)$ Then

$$\phi: (a, fa \xrightarrow{t} d) \longmapsto (a \xrightarrow{\phi t} c_t), \quad g(c_t) = d$$

Category objects

- A category object in **A** is a vertical monad in $Span(\mathbf{A})$
- An internal functor $F: \mathbb{A} \longrightarrow \mathbb{B}$ is a cell

$$\begin{array}{ccc}
A_0 & \xrightarrow{F_0} & B_0 \\
A_1 \downarrow & \stackrel{F_1}{\Longrightarrow} & \downarrow B_1 \\
A_0 & \xrightarrow{F_0} & B_0
\end{array}$$

respecting composition and identities

• A retrocell ϕ is an object function F_0 together with a lifting operation

• If ϕ respects composition and identities, then this is exactly a *cofunctor* $\mathbb{B} \longrightarrow \mathbb{A}$ in the sense of Aguiar

Discrete opfibrations

- \bullet ϕ looks like the lifting property for opfibrations without the projection functor
- ullet If F is also a functor and F_1 and ϕ are companions in a certain double category of cells and retrocells, then F is a discrete optibration. In fact F is a discrete optibration if and only if F_1 is a commuter cell

Lax functors

- If $F: \mathbb{A} \longrightarrow \mathbb{B}$ is a double functor, we get $F^{ret}: \mathbb{A}^{ret} \longrightarrow \mathbb{B}^{ret}$
- If $F : \mathbb{A} \longrightarrow \mathbb{B}$ is just lax, it doesn't extend to \mathbb{A}^{ret} ; it should properly respect companions
- If F is lax normal, then F preserves companions and also composites of the form $A \xrightarrow{f_*} B \xrightarrow{V} C$

$$\phi(v, f_*) : F(v) \bullet F(f_*) \longrightarrow F(v \bullet f_*)$$
 iso

[Dawson, Paré, Pronk, The Span Construction, TAC 2010]

Paranormal

Definition

F is *paranormal* if it is normal and also preserves compositions of the form $g_* \bullet V$

$$\phi(g_*, v) : F(g_*) \bullet F(v) \longrightarrow F(g_* \bullet v)$$
 iso

Theorem

If F is lax paranormal, then it extends to $F^{ret}: \mathbb{A}^{ret} \longrightarrow \mathbb{B}^{ret}$, oplax paranormal

Back to duals

Theorem

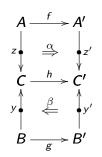
If $\mathbb A$ has companions and left duals, the left dual is a lax normal double functor which is the identity on objects and horizontal arrows

$$\bullet$$
(): $\mathbb{A}^{ret\ co} \longrightarrow \mathbb{A}$

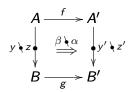
• The proof uses strong universality

Functoriality of \

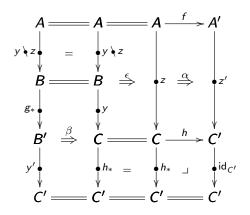
A cell α and a retrocell β as in



produce a cell



given by



Theorem

is functorial in both variables, covariant in the top variable and retrovariant in the bottom one