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The Problem

For two diagrams
I

A
Γ ��

I JJ

A
Φ��

what is the most general kind of morphism Γ // Φ which will
produce a morphism

lim−→ Γ // lim−→Φ ?

Answer: A morphism lim−→ Γ // lim−→Φ.
Want something more syntactic? E.g.

I

A
Γ ��

I J
F // J

A
Φ��
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Example

A1

A

f ����

A0

A1

f1��

A0

A1

f0 ��
B1 B2

B0

B1

g0

��

B0

B2

g1

��
B1

B
h ��

B1 B2B2

B
k��

p1

//

p1f0 = g0p2

p1f1 = g0p3

g1p2 = g1p3

Thus we get

hp1f0 = hg0p2

= kg1p2

= kg1p3

= hg0p3

= hp1f1

So there is a unique p such that pf = hp1.



Problems

I Different schemes (number of arrows, placement, equations)
may give the same p

I It might be difficult to compose such schemes

On the positive side

I It is equational so for any functor F : A // B for which the
coequalizer and pushout below exist we get an induced
morphism q



The Problem (Refined)

For two diagrams

I

A

Γ

��

I JJ

A

Φ

��

what is the most general kind of morphism Γ // Φ which will
produce a morphism

lim−→F Γ // lim−→F Φ

for every F : A // B for which the lim−→’s exist?

I Should be natural in F (in a way to be specified)



Take F to be the Yoneda embedding Y : A // SetA
op

. Then we
have the bijections

lim−→Y Γ // lim−→Y Φ

lim−→I
A(−, ΓI ) // lim−→J

A(−,ΦJ)

〈A(−, ΓI ) // lim−→J
A(−,ΦJ)〉I

〈xI ∈ lim−→J
A(ΓI ,ΦJ)〉I

An element of lim−→J
A(ΓI ,ΦJ) is an equivalence class of morphisms

[ΓI
a // ΦJ]J

where a ∼ a′ iff there is a path of diagrams

ΓI ΦJk+1ak+1

//

ΓI

ΓI

ΓI ΦJk
ak // ΦJk

ΦJk+1

Φjk

��



Thus, to give a compatible family

〈xI ∈ lim−→J
A(ΓI ,ΦJ)〉I

we must give:

I For each I , a JI and a morphism ΓI
aI // ΦJI

I For each I ′
i // I a path of J’s and a’s joining

ΓI ′
Γi // ΓI

aI // ΦJI

with
ΓI ′ ΦJI ′aI ′

//

Two such choices 〈aI : ΓI // ΦJI 〉 are 〈a′I : ΓI // ΦJ ′I 〉 are

equivalent, if for each J there is a path joining ΓI
aI // ΦJI with

ΓI
a′I // ΦJ ′I .



Theorem
The above data induces for every F a morphism
lim−→F Γ // lim−→F Φ. Two such sets of data induce the same
morphism for all F iff they are equivalent as described above.

A0

A1

f1��

A0

A1

f0 ��
B1 B2

B0

B1

g0

��

B0

B2

g1

��

p1

//

p2 //

A0

A0

A0

A0 A1
f0 // A1

B0

A1A1 B1
p1 // B1

B0

OO
g0

A0 B0p2

//

A0 B0p2

//

A0

A0

A0 B2
// B2

B0

OO
g1

A0 B2
//

A0

A0

A0 B0
p3 // B0

B2

g1��

A0

A0

A0

A0 A1
f1 // A1

B0

A1A1 B1
p1 // B1

B0

OO
g0



Canonization
Recalling our idea of

I

A
Γ ��

I J
F // J

A
Φ��

φ +3

we get for every I , a JI = FI , and a morphism
aI = φI : ΓI // ΦFI . Naturality of φ gives a one-step path

ΓI ′

ΓI ′

ΓI ′

ΓI ′ ΓI
Γi // ΓI

ΦFI ′

ΓIΓI ΦFI
φI // ΦFI

ΦFI ′

ΦFi
��

ΓI ′ ΦFI ′
φI ′

//

In the general case I  JI is not a functor. There can be several
JI , and for i : I // I ′ we don’t get a morphism JI // JI ′ but only
a path. This is a kind f “relation between categories”. They are
called profunctors (distributors, bimodules, modules, relators).



Profunctors
I A profunctor P : A • //B is a functor P : Aop × B // Set
I Every functor F : A // B gives two profunctors

F∗ : A • //B, F∗ = B(F−,−) : Aop × B // Set

F ∗ : B • //A, F ∗ = B(−,F−) : Bop × A // Set

F∗ a F ∗

I Composition A •P //B •
Q //C

Q ⊗ P(A,C ) =

∫ B

Q(B,C )× P(A,B)

= {[A •x
P
//B •

y

Q
//C ]B} = {y ⊗B x}

I A •x //B •
y //C ∼ A •x

′
//B ′ •

y ′ //C if there is

A B ′•
x ′
//

A

A

A B•x // B

B ′
b��

B ′ C•
y ′
//

B

B ′
��

B C•
y // C

C

y ⊗ x = y ′b ⊗ x
= y ′ ⊗ bx
= y ′ ⊗ x ′



Given functors

I
Γ // A oo

Φ
J

we get a profunctor Φ∗ ⊗ Γ∗ : I • // J

Φ∗ ⊗ Γ∗(I , J) = A(ΓI ,ΦJ).

Proposition

A compatible family 〈xI ∈ lim−→J
A(ΓI ,ΦJ)〉J determines a

profunctor P ⊆ Φ∗ ⊗ Γ∗ with the property that for every F and
every a ∈ P(I , J) we have

lim−→F Γ lim−→F Φ//

F ΓI

lim−→F Γ

injI ��

F ΓI F ΦJ
Fa // F ΦJ

lim−→F Φ

injJ��

for the morphism induced by 〈xi 〉.

Proof.
P(I , J) = {a : ΓI // ΦJ|[a] = [xI ]}.



Total Profunctors

Definition
P : A • //B is total if for every A,

lim−→B
P(A,B) ∼= 1.

Let T : A // 1 be the unique functor. Then P is total iff

T∗ ⊗ P
∼= // T∗.

Proposition

(1) Total profunctors are closed under composition.
(2) For any functor F : A // B, F∗ is total. (In particular IdA is
total.)
(3) If P and P ⊗ Q are total then Q is total.
(4) Total profunctors are closed under connected colimits and
quotients.
(5) F ∗ is total iff F is final.

(6) For I oo
Σ

K
Θ // J, Θ∗ ⊗ Σ∗ is total iff Σ is final.



Profunctors over A

Definition
For Γ : I // A and Φ : J // A, a profunctor from Γ to Φ (or a
profunctor from I to J over A) is

I

A

Γ ��

I J•P // J

A
Φ��

�� π

where P is a profunctor I • // J and
π : P // A(Γ−,Φ−) = Φ∗ ⊗ Γ∗ is a natural transformation.

Profunctors over A compose in the “obvious” way:

(Q, ψ)⊗ (P, π) = (Q ⊗ P, ψ ⊗ π)

ψ ⊗ π(y ⊗ x) = (ψy)(πx).



Theorem
Let

I

A
Γ ��

I J•P // J

A
Φ��

�� π

be a profunctor over A with P total. Then for every F : A // B
for which lim−→F Γ and lim−→F Φ exist, there is a unique morphism
lim−→Fπ : lim−→F Γ // lim−→F Φ such that for every x ∈ P(I , J) we have

lim−→F Γ lim−→F Φ
lim−→Fφ

//

F ΓI

lim−→F Γ

injI ��

F ΓI F ΓJ
Fπ(x) // F ΓJ

lim−→F Φ

injJ��

If (Q, ψ) : Φ //Ψ is another total profunctor over A, we have

lim−→F (ψ ⊗ π) = (lim−→Fψ)(lim−→Fπ).



Saturation

Definition
P // // Q : I • // J is saturated if x ∈ Q(I , J) and for some j
j : J // J ′, jx ∈ P(I , J ′) implies x ∈ P(I , J).

I P is saturated in Q iff for every I , P(I ,−) // // Q(I ,−) is
complemented in SetJ.

I Every P // // Q has a saturation P̄ // // Q.

Theorem
Let (P, π) and (P ′, π′) be two total profunctors Γ • //Φ. Then
they induce the same family lim−→F Γ // lim−→F Φ iff the images of
π : P //Φ∗⊗Γ∗ and π′ : P ′ //Φ∗⊗Γ∗ have the same saturation.



Naturality

Definition
A family of morphisms bF : lim−→F Γ // lim−→F Φ is natural if for
every G we have

G lim−→F Γ G lim−→F Φ
GbF

//

lim−→GF Γ

G lim−→F Γ
��

lim−→GF Γ lim−→GF Φ
bGF // lim−→GF Φ

G lim−→F Φ
��

Theorem
A total profunctor over A induces a natural family as above. Every
natural family comes from a total saturated profunctor ⊆ Φ∗ ⊗ Γ∗.
In fact there is a bijection between natural families and saturated
total ⊆ Φ∗ ⊗ Γ∗.



Cohesive Families

As remarked by Bénabou already in the 70’s, a category over I

K

I

Λ ��

corresponds to a lax normal functor I //Prof where an object I is
sent to KI , the fibre over I and a morphism i : I // I ′ to the
profunctor Pi : KI • //KI ′ given by formula

Pi (K ,K ′) = {K k // K ′|Λk = i}

Definition
Λ : K // I is a cohesive family of categories if each Pi is total.



In elementary terms, for every K in K and every morphism

i : ΛK // I ′, there exists a morphism k : K
k // K ′ such that

i = Λk and any two such liftings are connected by a path over i .

ΛK I ′
i

//

K

ΛK

K K ′
k // K ′

I ′

Proposition

(1) Opfibrations are cohesive families
(2) Cohesive families are stable under pullback
(3) Cohesive families are closed under composition



Definition
A cohesive family of diagrams in A is a span

I

K

I

Λ
��

K A
Γ // A

with Λ cohesive.

Let ΓI = Γ|KI
.

Theorem
lim−→ ΓI extends to a unique functor lim−→ Γ( ) : I //A such that for all
k : K // K ′ over i : I // I ′

lim−→ ΓI lim−→ ΓI ′lim−→ Γi

//

ΓK

lim−→ ΓI

injK
��

ΓK ΓK ′
Γk // ΓK ′

lim−→ ΓI ′

injK ′
��



Kan Extensions
lim−→ Γ( ) : I // A is the left Kan extension and cohesiveness says it
is fibrewise. So perhaps a more functorial version of the theorem is:

Theorem
Λ : K // I is cohesive iff for every pullback diagram

J I
F
//

L

J

Σ ��

L K
F // K

I

Λ��

and every cocomplete A, the canonical morphism

AJ AIoo
F∗

AL

AJ

LanΣ ��

AL AKoo F∗
AK

AI

LanΛ���� λ

is an isomorphism.

If we take J = 1, F  I ∈ I, we get (LanΛΓ)I ∼= lim−→ ΓI .



The Comprehensive Factorization

Set Cat
Relations ↔ Profunctors

Everywhere Defined ↔ Total
Single Valued ↔ ?

Functions ↔ Functors

Recall the comprehensive factorization on Cat (Street & Walters
’79). Every functor F factors as

A

C
G ��

A B
F // B

C

??

H

with G final and H a discrete fibration. So the final functors are
“epi-like” and the discrete fibrations are “mono-like”.



Discrete Valued Profunctors

Definition
P is discrete valued if it is of the form P ∼= G∗ ⊗ F ∗ for some

A oo
F

C
G // B with F a discrete fibration.

Theorem
P is discrete valued iff for every A, P(A,−) is multirepresentable
(Diers), i.e. a sum of representables. In fact

P(A,−) ∼=
∑
FC=A

B(GC ,−).

Corollary

The factorization P ∼= G∗ ⊗ F ∗ is unique up to isomorphism.

Theorem
P is representable iff it is total and discrete valued.



Mealy Morphisms

A small category is a monad in Span, which is a lax functor
1 // Span.
A lax transformation

1 Span

A
((

1 Span

B

66
σ��

corresponds to a Mealy morphism (machine)

I For every A, B we have a set S(A,B) of states

I Arrows of A are the input alphabet

I Arrows of B are the output alphabet

I Action

A′
a // A •s //B � σ // A′ •s

a
//B ′

σ(s,a) // B



Mealy Profunctors

A Mealy morphism determines a profunctor P : A • //B

P(A,B) =
∑

s:A • // B′
B(B ′,B)

Theorem
P is a Mealy profunctor iff P is discrete valued.


