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The Problem

For two diagrams
| J
r\ »/q>
A

what is the most general kind of morphism ' — & which will
produce a morphism

[imlM—limo 7
— —

Answer: A morphism lim I — lim ®.
Want something more syntactic? E.g.
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Example

Ao Bo

B} | %N
AL —= B B>

Y A

A B

pifo = gop2

pifi = gops

81p2 = 81pP3

Thus we get

hpify = hgop2

= kegip2

= kgips

hgops



Problems

» Different schemes (number of arrows, placement, equations)
may give the same p

> It might be difficult to compose such schemes
On the positive side

» It is equational so for any functor F : A— B for which the
coequalizer and pushout below exist we get an induced
morphism g



The Problem (Refined)

For two diagrams

what is the most general kind of morphism ['— ® which will
produce a morphism

I|_m> FI— I|_m> Fo
for every F : A— B for which the Ii_m)’s exist?

» Should be natural in F (in a way to be specified)



Take F to be the Yoneda embedding Y : A—> Set®”. Then we
have the bijections

lim YT — lim Y&

lim A(—,T1)— lim , A(—, ®J)

(A(=,T1)— lim  A(—, ®J))/
(i €lim  A(TT,®J)),

An element of “QJ A(T'/,®J) is an equivalence class of morphisms

[F1—>oJ],

where a ~ 2’ iff there is a path of diagrams
r—* - oJ
b



Thus, to give a compatible family
(x € lim AT, &),

we must give:
> For each /, a J; and a morphism ' —1~dJ,

> Foreach I'—~1a path of J's and a's joining
r’ L 2oy

with
ry ——0Jy
I/

Two such choices (a; : [/ —=®J)) are (a) : [ —dJj) are

equivalent, if for each J there is a path joining FIL>¢J, with

/

r—-oJ.



Theorem

The above data induces for every F a morphism

Ii_m> FT'— lim F®. Two such sets of data induce the same
morphism for all F iff they are equivalent as described above.

223
Al —————

Bo
fl |h N

AL —= B B>

fi P
Ag = A1 > By

| o

Ao i A% B Ay —2—> By
I teo [ ya
Ao — By A)——= B>

| e

Ao ——%—Bo



Canonization
Recalling our idea of

| ’; J
N
A

we get for every I, a J; = FI, and a morphism
a; = ¢l : T1— ®F/. Naturality of ¢ gives a one-step path

rr i 2L oF

| oF

I_I/ T q)FI,

In the general case / ~ J; is not a functor. There can be several
J;, and for i : | — 1" we don’t get a morphism J; — J;» but only
a path. This is a kind f “relation between categories”. They are
called profunctors (distributors, bimodules, modules, relators).



Profunctors

» A profunctor P : A—e—=B is a functor P : A°°? x B— Set
» Every functor F : A— B gives two profunctors

F.:A—e>B, F,=B(F—,—):A% x B—>Set
F*:B—e>A, F*=B(—,F—):B% x A—>Set
F. - F*

» Composition A t.B 2. C

B
Q® P(A, C):/ Q(B, C) x P(A, B)
={[A—3>-B—5-Cls} = {y ®5x}

> A S >B- 4> C~ A—%5>B s Cif there is

A—%~B—+-C yRx=y'b® x
H b =y @ bx
A—e>B —e>C =y ®x

X y



Given functors

I A<®

we get a profunctor ®* @[, : | —e—>J

O* @ T,(1,J) = A(T1,dJ).

Proposition

A compatible family (x; € lim | A(Tl,®J)), determines a
profunctor P C ®* ® I, with the property that for every F and
every a € P(l,J) we have

Fri—- Foy
injt | Vinis
lim FT —lim F&
for the morphism induced by (x;).

Proof.
P(l,J)={a:TI—®J|[a] = [x]}.



Total Profunctors

Definition
P : A—e—=B is total if for every A,

lim, P(A, B) = 1.

Let T : A—1 be the unique functor. Then P is total iff
T.0 P—>T,.

Proposition

(1) Total profunctors are closed under composition.

(2) For any functor F : A—=B, F, is total. (In particularlda is
total.)

(3) If P and P ® Q are total then Q is total.

(4) Total profunctors are closed under connected colimits and
quotients.

(5) F* is total iff F is final.

(6) For 1<=—K—2-1, 0, ® T* is total iff ¥ is final.



Profunctors over A

Definition
ForT:1—A and ¢ : J—A, a profunctor from I to ® (or a
profunctor from | to J over A) is

\\\UZ//
r (o]
A

where P is a profunctor | —e—1J and
m: P—A(l—,®—) = ®* @I, is a natural transformation.

Profunctors over A compose in the “obvious” way:
(Qy)@(P,7)=(QR® P,y &)

Y m(y ®x) = (dy)(mx).



Theorem
Let

P
| — o> J
N
A
be a profunctor over A with P total. Then for every F: A—B

for which lim FT and ILng Fo exist, there is a unique morphism
lim Frr - lim FI'— lim F® such that for every x € P(1,J) we have

Fri— ey

inji | Vinis

If (Q,v) : ®—V is another total profunctor over A, we have

lim F(4 ) = (lim F4é)(lim Fr).



Saturation

Definition
P > Q : |—e—=1 is saturated if x € Q(/,J) and for some j
Jj:Jd—=J jxe P(l,J) implies x € P(l,J).
» P is saturated in Q iff for every I, P(I,—) == Q(/,—) is
complemented in Set”’.

» Every P > @ has a saturation P——-Q.

Theorem

Let (P, ) and (P',x") be two total profunctors  —e—=®. Then
they induce the same family lim FI — I|_m> F® iff the images of
7 P—o*®l, and ' : PP—=®* @I, have the same saturation.



Naturality

Definition
A family of morphisms bg : li

lim FI— I|_m> F® is natural if for
every G we have

. bgr .
@)\LGFF% ||_rn> fFCD

Glim Fo

G Il—m> Fr Gbr —

Theorem

A total profunctor over A induces a natural family as above. Every
natural family comes from a total saturated profunctor C ®* Q..
In fact there is a bijection between natural families and saturated
total C d* R I,.



Cohesive Families

As remarked by Bénabou already in the 70's, a category over |

K

A

corresponds to a lax normal functor | — Prof where an object / is
sent to K, the fibre over | and a morphism /: [ — I’ to the
profunctor P; : K; —e= K,/ given by formula

Pi(K,K') = {K -~ K'|Ak = i}

Definition
N : K—=1is a cohesive family of categories if each P; is total.



In elementary terms, for every K in K and every morphism

i : AK—1", there exists a morphism k : K —%~ K’ such that
i = Ak and any two such liftings are connected by a path over i.
K - K’

AK I

Proposition
(1) Opfibrations are cohesive families

(2) Cohesive families are stable under pullback
(3) Cohesive families are closed under composition



Definition
A cohesive family of diagrams in A is a span

K—T - A
g
I

with A cohesive.

Let [, = F|K,.

Theorem

lim Iy extends to a unique functor I|_r’n> [y 1—=A such that for all
k:K—K' overi:l—1I

rK rk rK’

iani lian/

liml ——Iliml
— ! lir, I




Kan Extensions
Ii_m> [():1—=Ais the left Kan extension and cohesiveness says it
is fibrewise. So perhaps a more functorial version of the theorem is:

Theorem
N : K—1 js cohesive iff for every pullback diagram

K
I
—

L
z}
I

and every cocomplete A, the canonical morphism

F*
AL <—AK
Lanz\b YA ¢/Lan/\
is an isomorphism.

If we take J =1, F ~» | €|, we get (Lanpl')] = lim ).



The Comprehensive Factorization

Set Cat
Relations <> Profunctors
Everywhere Defined <« Total
Single Valued > ?
Functions < Functors

Recall the comprehensive factorization on Cat (Street & Walters
'79). Every functor F factors as

A—F>B

with G final and H a discrete fibration. So the final functors are
“epi-like” and the discrete fibrations are “mono-like".



Discrete Valued Profunctors

Definition
P is discrete valued if it is of the form P = G, ® F* for some

A<LC*G> B with F a discrete fibration.

Theorem
P is discrete valued iff for every A, P(A, —) is multirepresentable
(Diers), i.e. a sum of representables. In fact

P(A,—)= > B(GC,-).

FC=A

Corollary
The factorization P = G, ® F* is unique up to isomorphism.

Theorem
P is representable iff it is total and discrete valued.



Mealy Morphisms

A small category is a monad in Span, which is a lax functor

1—Span.
A lax transformation

A
1 /@:\Span
I

corresponds to a Mealy morphism (machine)
» For every A, B we have a set S(A, B) of states
» Arrows of A are the input alphabet
» Arrows of B are the output alphabet

» Action

A/ a A s B o A/ s? B/ o(s,a)

B



Mealy Profunctors

A Mealy morphism determines a profunctor P : A—e—>B

P(A.B)= ) B(B.B)

sstA—e— B’

Theorem
P is a Mealy profunctor iff P is discrete valued.



